
UDC 004.855.5

O. Bondar, O. Lisovychenko

REVIEW AND ANALYSIS ONE OF THE APPROACHES

TO TRAINING THE NEURAL NETWORK MODEL

Abstract: The article provides an overview and analysis one of the approaches to train-

ing a neural network model. The list of requirements for training the model was created. As

the architecture of a neural network, feedforward networks (perceptron and multilayer percep-

tron) were considered and a multilayer perceptron was selected. The input data for training

and testing the model were information from the electricity market for one year. Each stage of

building and training a model that will serve to predict data was described. The trained model

was tested using the mean absolute percentage error (MAPE). Graphs and tables were built

that show the dependence of the accuracy of the model on the parameters and input data dur-

ing training. The results obtained can be used for practical application, in particular for pre-

dicting economic indicators.

Keywords: artificial neural network, machine learning, deep learning, prediction, feed-

forward networks, perceptron, multilayer perceptron.

Introduction

It is difficult to imagine the modern IT industry without using artificial intelligence.

The basis of this area is machine learning, which, in turn, contains a large number of algo-

rithms.

Today, the most well-known class of machine learning algorithms is deep learning,

which has become quite popular in recent years. This is due to the emergence of powerful

computers, as well as a large number of marked data sets.

Deep learning uses a multi-layered filter system to hierarchically extracting the de-

sired features, that is, each layer at the input receives the output from the previous layer.

Usually, this type of training uses different types of neural networks.

An artificial neural network (ARN) is a system that can not only use the algorithms

that have been chosen for it but also self-learn with the help of data that it has previously cal-

culated. This training is created due to the fact that the neural network contains many layers,

which one after another transmit to the next layer the found features of the object, thus creat-

ing more complex features and give the desired result.

Deep learning is used to solve the following tasks:

 medical diagnostics;

 data forecasting;

 automatic image recognition;

 recommendation systems;

 natural language processing.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 O. Bondar, O. Lisovychenko

 ISSN 1560-8956 66

Nowadays, the greatest attention is paid to data forecasting. This process is used in

different situations. For example, weather forecasts, economic forecasting, political forecast-

ing, pedagogical forecasting, military, and others.

Of these uses, the most useful is economic forecasting, as this factor is the most im-

portant in the formation of a successful state.

Accordingly, it was decided to consider and analyze one of the approaches to training

the neural network model that will serve to predict data.

Problem overview

The accuracy of the system that will use the neural network model depends on the

quality of this model, so model training is the most important step.

Accordingly, the main task of this article is to review and analyze one of the ap-

proaches to training the neural network model.

Based on this, the following requirements were formed, which are required for analysis:

 consider and choose one of the direct distribution networks;

 select the value of the optimization factor and the required number of input

layers of the network;

 create and teach several models using a different number of cycles, hidden lay-

ers, and other parameters;

 for each model calculates the average absolute error in percentages (MAPE);

 compare the obtained results in the form of graphs and tables.

Review and analysis of feedforward networks

The first task of the study is to review feedforward networks and select the most suita-

ble for forecasting data.

Classical and multilayer perceptrons are types of neural networks that are quite rectili-

near, as they transmit information from the input layer to the output, passing through each

layer. Figures 1.1-1.2 show examples of such networks.

Figure 1.1. Perceptron

Input layer

Output layer

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 67

Figure 1.2. Multilayer perceptron

The classical perceptron is usually used to solve classification problems based on bi-

nary input data. Accordingly, this neural network architecture is not quite suitable, because,

for data prediction, the input is not only binary signals.

The multilayer perceptron is one of the types of feedforward neural network, which is

very similar to the classical perceptron, except that this neural network contains additional hid-

den layers in addition to the input and output. In this type of network, all neurons except inputs

use a nonlinear activation function. When training, the multilayer perceptron uses "teacher

training" and an error backpropagation algorithm. Practice proves that this grid works very well

in solving problems of data forecasting and the construction of regression models.

Creating and training the model

Electricity market data were selected for research. Based on these data, need to create

a model that can be used to forecast market values “for the day ahead”. The input data for

training are the value of the intraday electricity (VDR) market and the value of the market

“for the day ahead” (RDN) for twelve months, which are divided by time and day.

The best tools for creating and training a model are the Python programming lan-

guage, the scikit-learn machine learning library, and pandas library for working with the data-

set. Auxiliary are: Visual Code programming environment and interactive shell for IPython

programming.

Using the pandas library, twelve datasets were obtained, which were combined by VDR

and RDN, x and y, respectively. Data were checked for absence and correctness of values.

The next step was to divide the data into input and output. To do this, we used the

train_test_split function from the sklearn.model_selection library. Figure 2 shows an example

of using this feature.

Figure 2. Splitting data

Input

layer
Output

layer

Hidden layers

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 68

As can be seen from the figure, 20% of the total data size was selected for the x and y

test samples, and the number 42 was selected (random_state) generation data.

A multilayer perceptron (MLPRegressor) from the sklearn.neural_network library was

used as a neural network. In that the model will train with each cycle, the warm_start parame-

ter was selected. The optimization algorithm – L-BFGS, the number of epochs (max_iter) was

2000 cycles (Fig. 3.).

Figure 3. Creating a model using multilayer perceptron

The next task was a selection of network parameters: the number of hidden layers, the

regularization parameter. To automatically calculate these parameters, is used the Random

Search method. However, the automatic calculation also has a disadvantage, which is that the

learning speed of the model is reduced.

The following values of parameters were chosen for the initial analysis: the number of

hidden layers - 3, regularization parameter - 0.001 (Fig. 3.).

As input for training and testing, it was decided to create two arrays (for values of x

and y), which are filled by passing through datasets and taking for x at each iteration two days

with VDR, and for y - the next day with RDN (Fig. 4.1-4.2.).

Figure 4.1. Input data for training

Figure 4.2. Output data for training

An example of filling arrays in the code is shown in Figure 5.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 69

Figure 5. Filling arrays

The figures show that data filling begins with the first element and continues until the

end of the dataset is reached.

Below are all the operating conditions of this filling algorithm.

X Y X Y X Y

Figure 6. Conditions for filling arrays with data

The fit method is shown below which is used to train the model:

Figure 7. Training the model

After training, the model was tested, finding the average absolute error in percent (Fig. 8.).

Figure 8. Testing the model

To calculate the MAPE, you need to get the predicted data using a trained model and

take the original source data. The test result is shown below:

Figure 9. The result of testing

Based on the steps described above, additional research was conducted and MARE

was calculated to verify the accuracy of learning the neural network model depending on the

parameters specified at the stage of creating the model. Based on this, a table with the results

of the study was created (Table 1.).

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 70

Table 1.

Dependence of learning quality on input parameters

Number of

hidden layers

Number of

training epochs

Regularization pa-

rameter

Number of values for

training (units /%)
МАPE

3 2 10 292/80% 82.0

3 20 10 292/80% 20.1

3 200 10 292/80% 19.7

3 2000 10 292/80% 19.0

50 2000 10 292/80% 26.5

50 200 10 292/80% 0.5

50 20 10 292/80% 1.4

50 2 10 292/80% 0.1

3 2000 1 292/80% 9.7

3 2000 0.1 292/80% 8.99

3 200 0.1 292/80% 9.5

3 20 0.1 292/80% 0.5

3 2000 0.01 292/80% 9.5

3 2000 0.001 292/80% 8.7

3 2000 0.001 183/50% 1.5

3 2000 0.1 183/50% 1.2

According to these data, a graph was constructed (Fig. 10.), which visually shows the

dependence of the quality of the model on the input parameters. The smaller the average abso-

lute error in percent, the higher the quality of the model, respectively.

Figure 10. Dependence of MARE on various input parameters

0
10
20
30
40
50
60
70
80
90

Data 80 80 80 80 80 80 80 80 80 80 80 80 80 80 50

Coef 10 10 10 10 0.1 10 10 0.1 10 10 1 0.1 0.01 0.001 0.001

Epochs 2 2 20 20 20 200 200 200 2000 2000 2000 2000 2000 2000 2000

Layer 3 50 3 50 3 3 50 3 3 50 3 3 3 3 3

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 71

From the graph and table above, it follows that the quality of the trained model de-

pends primarily on the number of learning cycles and the number of hidden layers. Based on

the results, we can say that the impact on the quality of the model also has the amount of se-

lected data for its training.

Conclusions

In the course of the article, one of the approaches to training the neural network model

that will be used for data prediction was considered and analyzed.

In accordance with the requirements, the following tasks were performed:

 feedforward networks were considered and analyzed, and a multilayer perceptron

is selected for research;

 prepared input data for model training and testing;

 created a model using MLPRegressor and the L-BFGS optimization algorithm;

 network parameters were selected: number of hidden layers, regularization para-

meter, number of training cycles;

 model training was conducted;

 network testing was performed using the calculation of the mean absolute error in

percentage (MARE);

 a study was conducted that included an analysis of the dependence of the accura-

cy of the model on the choice of various parameters and data at the training stage;

 the corresponding table and graph with results were constructed.

REFERENCES

1. Neurotechnologies and neurocomputer systems: textbook. Yampolskyi L. S., Liso-

vichenko O.I., Oliynyk V.V. Kyiv: Dorado-Druk, 2016. 576 p. (Ukr.)

2. Feedforward Neural Networks and Multilayer Perceptrons. URL:

https://boostedml.com/2020/04/feedforward-neural-networks-and-multilayer-perceptrons.html

(date of use: 26.11.2020)

3. Perceptrons and Multi-Layer Perceptrons: The Artificial Neuron at the Core of Deep

Learning. URL: https://missinglink.ai/guides/neural-network-concepts/perceptrons-and-multi-layer-

perceptrons-the-artificial-neuron-at-the-core-of-deep-learning/ (date of use: 26.11.2020)

4. Multilayer perceptron. URL: https://wiki.loginom.ru/articles/multilayered-perceptron.html

(date of use: 27.11.2020) (Rus.)

5. MLPRegressor URL: https://scikit-learn.org/stable/modules/generated/sklearn.neural_

network.MLPRegressor.html (date of use: 27.11.2020)

6. Neural Architecture search: A Survey URL: https://www.jmlr.org/papers/volume20/

18-598/18-598.pdf (date of use: 28.11.2020)

7. Random Search for Hyper-Parameter Optimization. URL: https://www.jmlr.org/papers/

volume13/bergstra12a/bergstra12a.pdf (date of use: 28.11.2020)

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 72

https://wiki.loginom.ru/articles/multilayered-perceptron
https://scikit-learn.org/stable/modules/generated/sklearn
https://www.jmlr.org/papers/volume20/

8. Limited-Memory Broyden-Fletcher-Goldfarb-Shanno. URL: https://software.intel.com/

sites/products/documentation/doclib/daal/daal-user-and-reference-guides/daal_prog_guide/GUID-

254D0216-3379-4733-95CA-138009F24A04.htm (date of use: 02.12.2020)

9. Basic estimates of the accuracy of time series forecasting. URL: https://www.mbureau.ru/

blog/osnovnye-ocenki-tochnosti-prognozirovaniya-vremennyh-ryadov (date of use: 05.12.2020)

(Rus.)

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 73

https://software.intel.com/
https://www.mbureau.ru/

	+Belous_Krуlov_Anikin
	+Bondarenko_Zeniv
	+Diakov_Zubrei
	+Kornaga_Bazaka_Marienko
	+Romanenko_Finogenov_Bondarenko
	+Stenin_Pasko_Soldatova_Stenin
	+SteninMelkumianSoldatovaDrozdovich
	+Бондар_Лісовиченко
	+Голубек
	+Дьяков_Самойдюк
	+Круглова_Диховичний_Лисенко_Богданова (Восстановлен)_1
	+Пархоменко_Сегол_Лісовиченко
	+Степанов_Корнага_Крилов_Анікін
	Binder2.pdf
	Зміст
	УДК
	ПРО АВТОРА

 HistoryItem_V1
 AddNumbers

 Range: From page 1 to page 115; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 70.87 points, vertical 25.51 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20210115114315

 1
 1

 BR

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1216
 231
 0
 1
 R0
 12.0000

 Odd
 1
 SubDoc
 115

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 25.5118

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 0
 115
 114
 5ed48a3b-7b83-42ad-916a-f3d3deaf1e41
 58

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 1 to page 115; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 70.87 points, vertical 25.51 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20210115114344

 1
 1

 BL

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1216
 231
 0
 1
 R0
 12.0000

 Even
 1
 SubDoc
 115

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 25.5118

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 1
 115
 113
 e1c08d3a-6818-42b7-b86a-ada69273a2b6
 57

 1

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 2
 Page size: same as current

 D:20210115114404

 Blanks
 Always
 2
 1

 D:20180918122136
 841.8898
 a4
 Blank
 595.2756

 70
 Tall
 1060
 190
 0
 1
 1

 CurrentAVDoc

 SameAsCur
 BeforeCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 0
 2

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 Page size: same as current

 D:20210118082038

 Blanks
 Always
 1
 1

 D:20180918122136
 841.8898
 a4
 Blank
 595.2756

 70
 Tall
 1060
 190

 0
 1
 1

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 141
 1

 1

 HistoryList_V1
 qi2base

