

UDC 004.051

S.O. Diakov, A .S. Samoidiuk

ASYNCHRONOUS PROGRAMMING AS A MEANS TO INCREASE THE

PRODUCTIVITY OF SMART HOME MANAGEMENT SYSTEMS

Abstract: This article considers the main problem of modern high-load systems, namely,

the productivity of their work. The main purpose of this article is to find an approach to address

the issue of high-load systems performance, particularly smart house management systems.

These systems have become very popular in our time, the number of their users is growing

every year, so the question of their performance is very relevant. In order to achieve this goal, I

will consider existing problems and different ways of their solutions. The approach of

asynchronous programming is proposed as one of the ways to solve a problem of productivity.

It will greatly increase the bandwidth of servers and reduce the response time to customer

requests - two common problems that arise when designing high-load systems. The relevance of

the proposed solution will be tested experimentally, with the results presented in tabular form.

Keywords: Software architecture; C#; asynchrony; async; await; CRUD; design

patterns; data modeling.

Problem Statement

The smart house management system can be divided into two levels: the upper and the

lower. The lower level is a collection of smart devices and the upper one is a system that processes

the data it receives from these devices. This article focuses on the upper level of the smart home

management system and the problems that arise in it during the processing of information.

As mentioned above, the upper level is responsible for receiving and analyzing data

from sensors, sending data to the cloud storage, saving the results in its own database. And

because of such a large list of tasks, there are problems with performance[5].

Figure 1. An example of information with which the top-level system works

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 S.O. Diakov, A .S. Samoidiuk

 ISSN 1560-8956 87

The information processing system every second receives a large amount of

information, like that shown in the figure. So, what can go wrong? In some cases, this greatly

affects the speed of the application. For example, the user sends a request to a server which

accesses the external API and the database and makes a response from the results obtained. It

often happens that the API returns the information with delay. And while the server does not

receive that info, it cannot perform other operations, such as querying the database, which

also takes a lot of time depending on its size.

An overview of existing solutions

There are two programming models: asynchronous programming model and

synchronous [6]. Each of them can work in a multi-threaded or single-threaded environment.

Let's look at each of them and start with the synchronous model. In this programming model,

a task list is assigned to a thread and it works on them one by one. When it finishes work on

the first task, it transitions to the second. There is no way to finish work on the mid and start

executing on other tasks.

Figure 2. An example of synchronous code

The figure shows the function on the server that processes requests. As we can see, it

makes a request to the external API and database. And combines these two results for a

response to the client. The problem here is that the request to the API can take from a few

milliseconds to several seconds, and the query to the database will not even be sent. This is a

fairly common problem in smart home management systems.

Another approach is multithreading. Here we have several threads, each of them

working on their own task list. The number of available threads may vary depending on the

amount of available resources [7]. In the figure below you can see the features of multi-

threading. We have four threads and each of them has its own list of tasks and work

independent from each other.

In the first case, the problem is obvious. Such an execution case takes too much time

and does not allow the server to work on other tasks while waiting for a response from some

resources. The second case is much more interesting. If there are several threads running in

the process, then we can expect two main problems: deadlocks and race conditions.

Deadlocks arise when two or more threads are waiting for the same resource and block each

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 88

other, since it is not specified which thread should receive the necessary resource in such a

situation. Race conditions occur when two or more threads use the same resource and change

it in an unintended manner, since the operating system may change the order of the threads.

There are ways to resolve these and some other situations, but this is much complicated and

not as efficient as the proposed solution.

Figure 3. Task execution in multi-threaded synchronous programming model

Proposed solution

Asynchronous is a form of processing that allows you to continue to perform other

tasks that do not wait for the transfer to complete. Asynchronous programming successfully

solves many problems. One of the most important is the availability of the user interface. For

example, a smart home control system, after the user has selected an action, the program

sends a request to the server. And that process that can last quite a long time. If the

application is working synchronously, the user will not be able to interact with the page until

the result comes [8]. Asynchronous code allows you to hide these unpleasant effects from the

user and keep the page live. In this case, the main execution thread is split into two branches.

One of them continues to deal with the interface, while the other executes the request.

Figure 4. Comparison of synchronous and asynchronous models

Let's see how to write asynchronous code using the example of the C# language. First

need to understand how the server handles requests. When the server receives a request, it

assigns it one thread from the thread pool. Since the number of available threads is limited

then if the thread wastes most of the time in waiting then it will greatly decrease system

performance. But this does not work when writing asynchronous code. Since instead of

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 89

waiting for the completion of any request, it will be available to the thread pool. It will make

the server faster and its throughput will increase significantly.

Figure 5. The process of processing the request by the server

How to write asynchronous code? The basis for working with asynchronous calls in C

are two keywords: async and await, the purpose of which is to simplify the writing of

asynchronous code. They are used together to create an asynchronous method. The

asynchronous method has the following features [9]:

 the method header uses the «async» modifier;

 the method contains one or more await expressions;

 the return type is one of the following: void, Task, Task<T>, ValueTask<T>.

The asynchronous method, like the usual one, can use any number of parameters or

not use them at all. It is also worth noting that the word async, which is specified in the

method definition, does not automatically make the method asynchronous. It only indicates

that this method may contain one or more await expressions. Let's rewrite the method

presented earlier on asynchronous.

Figure 6. An example of asynchronous code

The main benefits of asynchronous programming are [10]:

• significantly increase the performance of your application, when you have long-

running operations;

• organize your code with async / await, make it more readable;

• using the latest upgrades of the language features.

So, how this approach helps to improve smart home management systems

performance? These systems operate with large amounts of data and work with API. It was

noticed while the request is being executed, about 70-80% the time wasting while waiting for

the dependent tasks. It can be maximally used in asynchronous programming, where, as soon

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 90

as a task is transferred to another thread (for example, SQL), the current thread saves state and

is available to run another process, and when the SQL task is completed, any thread that is

free, can do this task.

Results

I have run several experiments to make sure that the proposed solution is effective.

Results you can see on the figure below.

Figure 7. Comparison of synchronous and asynchronous methods

As you can see from the figure, asynchronous has a great advantage with many

simultaneous queries.

Conclusion

Older programming models such as the synchronous model cannot provide enough

performance for modern systems. Therefore, a new asynchronous model comes to replace it.

This model is very well suited for systems that work very closely, for example, with a

database. Asynchronous code allows the server to do other tasks while it is waiting for the

current task to respond. Therefore, this approach has many advantages, including an increase

in server bandwidth.

This approach to programming was used to create a smart home management system

and showed itself well. It was noticed a significant increase in the speed of the server

response under heavy loads. Based on these results, I can say that the goal has been achieved.

REFERENCES

1. Harper R. Inside the Smart Home / R. Harper. — New York City: Springer, 2003. —

280 с.

2. Badica C. An overview of smart home environments: Architectures, technologies

and applications / C. Badica, M. Brezovan // ResearchGate. — 2013.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 91

http://udidahan.com/2009/12/09/clarified-cqrs/

3. Saponara S. Network Architecture, Security Issues, and Hardware Implementation

of a Home Area Network for Smart Grid / S. Saponara, T. Bacchillone // Journal of Computer

Networks and Communications. — 2012.

4. Coulouris G. Distributed Systems: Concepts and Design / G. Coulouris,

J. Dollimore, T. Kindberg. — London: Pearson, 2011. — 1080 с.

5. Wu C. Service-Oriented Smart-Home Architecture Based on OSGi and Mobile-

Agent Technology / C. Wu, L. Fu // IEEE Transactions on Systems, Man, and Cybernetics,

Part C. — 2007. — C.193-205.

6. Herlihy M. The Art of Multiprocessor Programming, Revised Reprint / M. Herlihy,

N. Shavit. — Burlington: Morgan Kaufmann, 2012. — 536 с.

7. Crenshaw D. The Myth of Multitasking: How "Doing It All" Gets Nothing Done /

D. Crenshaw. — San Francisco: Jossey-Bass, 2008. — 144 с.

8. Fowler M. Patterns of Enterprise Application Architecture / M. Fowler. — Boston:

Addison-Wesley Longman Publishing Co., Inc., 2002. — 576 с.

9. Blewett R. Pro Asynchronous Programming with .NET / R. Blewett. — New York:

Apress, 2013. — 352 с

10. Cleary S. Concurrency in C# Cookbook: Asynchronous, Parallel, and

Multithreaded Programming / S. Cleary. — Sebastopol: O'Reilly Media, 2014. — 208 с.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 92

	+Belous_Krуlov_Anikin
	+Bondarenko_Zeniv
	+Diakov_Zubrei
	+Kornaga_Bazaka_Marienko
	+Romanenko_Finogenov_Bondarenko
	+Stenin_Pasko_Soldatova_Stenin
	+SteninMelkumianSoldatovaDrozdovich
	+Бондар_Лісовиченко
	+Голубек
	+Дьяков_Самойдюк
	+Круглова_Диховичний_Лисенко_Богданова (Восстановлен)_1
	+Пархоменко_Сегол_Лісовиченко
	+Степанов_Корнага_Крилов_Анікін
	Binder2.pdf
	Зміст
	УДК
	ПРО АВТОРА

 HistoryItem_V1
 AddNumbers

 Range: From page 1 to page 115; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 70.87 points, vertical 25.51 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20210115114315

 1
 1

 BR

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1216
 231
 0
 1
 R0
 12.0000

 Odd
 1
 SubDoc
 115

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 25.5118

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 0
 115
 114
 5ed48a3b-7b83-42ad-916a-f3d3deaf1e41
 58

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 1 to page 115; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 70.87 points, vertical 25.51 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20210115114344

 1
 1

 BL

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1216
 231
 0
 1
 R0
 12.0000

 Even
 1
 SubDoc
 115

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 25.5118

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 1
 115
 113
 e1c08d3a-6818-42b7-b86a-ada69273a2b6
 57

 1

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 2
 Page size: same as current

 D:20210115114404

 Blanks
 Always
 2
 1

 D:20180918122136
 841.8898
 a4
 Blank
 595.2756

 70
 Tall
 1060
 190
 0
 1
 1

 CurrentAVDoc

 SameAsCur
 BeforeCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 0
 2

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 Page size: same as current

 D:20210118082038

 Blanks
 Always
 1
 1

 D:20180918122136
 841.8898
 a4
 Blank
 595.2756

 70
 Tall
 1060
 190

 0
 1
 1

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 141
 1

 1

 HistoryList_V1
 qi2base

