
UDC 004.67

O. Tymchenko, T. Likhouzova

AN ARCHITECTURAL SOLUTION FOR DATA

COLLECTION AND MONITORING SYSTEM SOFTWARE

Abstract: The article considers the problem of monitoring the condition of vehicles of

organizations with a fleet. A comparative analysis of solutions available on the market is

done. Requirements for software for data collection and monitoring systems that could be

used by both large and small enterprises are formulated. An architectural solution is proposed,

which is based on the ideas of service-oriented software architecture and cloud-first approach

and allows you to easily scale and increase the functionality of the system, as well as reduce

maintenance costs. Developed software for data collection and monitoring of vehicles, which

differs from others by the ability to integrate with any vehicle.

Keywords: fleet management system, intelligent transport systems, distributed data

processing systems, cloud computing, NoSQL.

Introduction

In the process of operation of vehicles inevitably have to face the need for timely

maintenance and repair, control over the efficiency of use, it is often necessary to understand

exactly where the vehicle is. The pretty obvious fact is that these operations are routine and

typical. It is necessary to regularly check the condition of all systems, monitor the wear and

tear of units, and there is no possibility of remote control over the location, fuel consumption,

and other indicators. By transferring the responsibility for controlling the polling of various

sensors of the vehicle to the hardware-software complex, we will be able to monitor the

condition of the car from anywhere in the world in real-time via the Internet. Users of such a

system can be both individual car owners and logistics companies with a different number of

vehicles in the fleet. Therefore, it is important to strike a balance between functionality and

ease of use, as well as provide quality work for customers with any number of vehicles.

Analysis of existing solutions

Fleet Management System (FMS) - a transport management system, usually

understood as software that allows you to manage a fleet owned by a company, government

organization, individual organization, etc [1]. These tasks can range from purchasing a

vehicle to maintaining it and then even to disposing of it.

The main purpose of such software is to accumulate, store, process, monitor, and

export information. Sources of information are limited only to the specific implementation, so

it can be: databases of public administration, API provided by these authorities, databases of

insurance companies, data from internal sources of organizations, such as accounting data

organization or telemetry devices installed on the transport.

 O. Tymchenko, T. Likhouzova

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

55

FMS should usually be able to manage tasks of any vehicle - cars, trucks, buses,

trailers, etc. Vehicle management tasks generally include [1-3], but are not limited to:

- inventory of vehicles;

- vehicle maintenance;

- licensing, insurance, taxation;

- cost management and cost analysis;

- vehicle disposal.

Also, almost always such systems include functions of tracker and task manager for

drivers. In addition, it is necessary to highlight the large range of tasks that are solved with the

help of FMS - the collection of telemetry and monitoring. These tasks will be discussed in

more detail in this paper. As a rule, tracking and monitoring tasks fall into several categories:

- telemetry collection;

- tracking and route planning;

- warning and notification of anomalies;

- event and operation log.

Many metrics can be collected, and they may vary for each system, but there is a

specific standard that regulates such metrics. It is called Fleet management system interface

(FMSI) [3]. This standard was founded in 2002 by six European manufacturers: Daimler AG,

MAN AG, Scania, Volvo, IVECO, DAF Trucks. The standard allows the development of

software that accepts telemetry regardless of the vehicle manufacturer.

To understand what functionality the existing systems on the market have, it is

necessary to compare them (table 1). Fleetio [4], Momentum IoT [5], and Onfleet [6] are the

most popular on the market.

From the table we can conclude that all of the reviewed products have advantages in

their field, for example, Onfleet has a set of the necessary functionality to manage tasks, drivers,

orders, and so on. It makes Onfleet very similar to a CRM system. Meanwhile, Fleetio and

Momentum IoT have focused on ease of use and real-time information handling. Momentum

IoT has a major advantage over its competitors - it has a tracker to collect data, so the telemetry

is more detailed and accurate. Fleetio uses a mobile app to gather information, which has

allowed it to develop functionality to file reports and get geolocation at the same time.

Table 1.

Comparison of FMS

Feature Fleetio Momentum IoT Onfleet

1 Free trial + - +

2 Report generation +- - +

3 Real-time information +- + -

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

56

End to the table 1.

Feature Fleetio Momentum IoT Onfleet

4 Easy to use + + -

5 Affordable price + + -

6 Notifications + + +

7 Geolocation +- + -

8 Task/driver management - - +

9 Device for collecting telemetry - + -

Materials and methods

Information from research about similar systems was used to formulate both

functional and non-functional requirements for the systems. During the research

functionalities were compared, similarities were found, and requirements were synthesized on

this basis. The following requirements have been identified as necessary:

 authorization and user authentication;

 ability to receive telemetry;

 ability to display new data in real-time;

 ability to generate reports;

 viewing data in graphs;

 adding and editing new vehicles;

 editing of user data;

 scheduling of services;

 possibility to add any number of vehicles;

 storage of detailed telemetry for up to 30 days, subsequent aggregation of daily data;

 real-time alerting via notifications, emails, and SMS messages;

 ability to view real-time geolocation;

 the possibility of tracing the route of each vehicle;

 ability to integrate with other systems through the OpenAPI specification;

 support for up to 500 vehicles simultaneously.

Non-functional interface requirements and hardware/software requirements include

the following:

 availability of a unified API for communication with third-party systems;

 the systems with which the product will be developed should provide an HTTP

interface or the ability to integrate through a message broker;

 the ability to be deployed in one of the cloud platforms.

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

57

 The description of operational requirements is more extensive because it includes

many nuances. Security requirements:

 implementation of authorization and authentication using the OAuth2 protocol;

 all communication channels must be protected by encryption;

 logs must not contain PII (personal identification information).

For reliability requirements, we refer to an IBM article [7], which states that for

dedicated systems the availability level should be at least 99%, which means 3.65 days per

year is available for technical work.

Let's make a requirement for performance according to existing research. Article [8] states

that the optimal speed of downloading a page ranges from 1 s to 3 s. Since it can be a challenge

to ensure that data loads in such a short time frame, let's assume that the page load speed should

be <=3 s and that the content should load in time frame up to 6 s after the page loads.

For the data storage policy (backups) let's take an interval of 24 hours with backups

saved for 14 days.

In the matter of managing checks, all errors should be handled in a way to hide the

internal implementation from the end-user.

Results

When the system under development is real and constantly expanding, the way the

software components are organized and structured becomes one of the most important aspects

determining the viability and cost of the software product.

To develop the right kind of software system architecture it is necessary to determine a

specific set of properties, that should be provided by the system. According to existing data

[9] and our considerations, let’s formulate a list of criteria:

 efficiency - must ensure the fulfillment of functional requirements under the given

conditions, scalability, reliability, etc;

 flexibility of the system - the ease of change, the ability to defer key decisions;

 expandability - the ability to add new functions without modifying the existing

ones, the implementation of the open/closed principle, the implementation of the YAGNI [10]

principle;

 possibility of increasing the number of people in the development team;

 easy testing of the code;

 reuse of components.

The main goal in software architecture development is to reduce the complexity and

intricacy of the system as a whole and each component in particular. The methods for solving

this problem are decomposition and decoupling [11].

Figure 1 shows the developed hierarchy diagram of the software modules for

monitoring and data collection. From the diagram, we can see that the entire software product

was divided into two parts: the backend, and the frontend.

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

58

Figure 1. Hierarchy of software modules

The frontend part is generally responsible for the task of presenting information to the

user. In the course of decomposition, the functionality was conditionally divided into three

parts necessary for MVP: the dashboard module responsible for reports/graphics, the user

management module, and the vehicle management module.

The backend is responsible for data reception, processing, aggregation, timely transfer

of data to the frontend, and interaction with third-party systems. There is an API module that

provides an interface to the application, a module for real-time communication, a module for

data aggregation, and a module for data processing. The diagram also shows the data storage

module and the event generator separately. They are not part of the software complex but

must be present. An event generator is a device for collecting telemetry from a vehicle, but as

part of this work, a program simulating such a device was developed to provide a test and

demonstration of operation.

The interaction of web applications in real-time is implemented using the WebSockets

approach, the principle of which is that a permanent connection is established between the

server and the client, and then they exchange data. When the session ends, the connection is

broken. WebSockets meets the requirements and is the recommended choice, so this approach

was used in the development of the monitoring and data collection system. To facilitate the

development process and ensure stable communication, we used a solid off-the-shelf solution,

SignalR. SignalR is a library that provides a convenient API that provides a wrapper for

working with WebSocket. The advantage of this library is that it supports all kinds of

approaches described above. The idea is to use the best option even if you can't connect via

WebSocket. Also one of the big advantages is the availability of the library for different

platforms, which allows you to choose any technology to implement the software.

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

59

Almost any software stores some information or state in some data storage. Usually,

databases are used to store this information or state. Considering all the advantages and

disadvantages [12-14], it was decided to use the NoSQL database Azure Cosmos DB for this

system. This provided the right level of bandwidth because of the ability to handle large

amounts of data, made it very easy to change the type of collected telemetry, made it possible

to scale and support a large number of vehicles and users. Diagram of the database developed

for the software system for monitoring and data collection of vehicles is shown in Fig. 2.

Since one of the requirements is to provide scalability, a serverless technology Azure

functions, was used to develop the backend. It is an event-oriented platform that allows you to

easily and conveniently develop applications that interact with each other in real-time.

Figure 2. Scheme of the database

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

60

The Onion architecture was chosen to organize the code in the backend. This

architecture consists of layers, each layer should be as independent of each other as possible,

and cohesion grows closer to the center. This architecture has several advantages over the

classic three-layer architecture for instance this architecture has better performed principle of

control inversion because the different layers interact with each other only through interfaces,

and the implementation is determined during operation. The code is easier to test, there are no

complex dependencies between layers, there is no need for joint projects.

SPA application was developed as the frontend part of the software. SPA approach

allows building a user-friendly and pleasant interface by updating only the components of the

page instead of a full update, which reduces the amount of transferred data and makes the data

update process almost invisible to the user.

Fig. 3 shows the system modules, separated into individual applications, and the

basic infrastructure required for communication and operation.

Figure 3. System modules

To solve this problem, it will be advisable to use video cameras, as this method is low-

cost compared to others, and also gives fairly accurate results without the need to mark each

individual car with labels or additional devices. To implement this method, you can use

several approaches:

To properly evaluate the proposed software, it is necessary to formulate the criteria by

which it will be evaluated. Today there are many approaches to software quality evaluation,

but I believe that the most appropriate and adequate is the ISO/IEC 25010 standard.

According to the standard, 8 aspects of software deserve evaluation. Let's evaluate the

software for each of these points, on a scale of 0 to 5.

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

61

Table 2.

Final quality assessments of the proposed software

Quality aspect Grade Notes

Functional suitability 4 limited amount of functionality

Compatibility 5 widely used protocols for communication

Ease of use 3 needs of people with disabilities

Reliability 5 geo-replication, scaling

Security 3 not given due attention during development

Convenience of support 5 onion architecture, frontend structure

Portability 2 extensive use of Azure-specific services

The ability to perform the task as required under different loads was measured to test

the effectiveness of the proposed software. In order to assess how efficiently the task was

performed, the timeframe was measured from the moment when the request with the new

telemetry update was received by the software until the software displays the result in a

certain form on the client application.

According to the functional requirements, the MVP implementation must support the

simultaneous operation of 500 vehicles. To obtain the result, 5 measurements were performed

for 5, 50, 100, 500 telemetry generators. There was a pause after each measurement.

The result was calculated as the arithmetic mean for each measurement.

From the results, you can see that the first measurement for each successive test series is,

on average, larger than the other tests for a particular test series. Then the measurement results

come to a plateau and even decrease for the last measurement. It can be assumed that the delay on

the first request is the result of the so-called cold-start problem. This problem is characterized by

the fact that applications deployed in the cloud need some time to initialize after a certain amount

of downtime. Since there was a long pause between each series of measurements (an average

of 25 minutes) it takes some time to "warm up" when receiving the application request.

Overall, the delay for each of the test series is more than acceptable and ensures that

the user is comfortable using the software. So, for 5, 10, and 100 generators the average delay

has a value of about 1 s, which is more than enough. For 500 generators, the average value is

about 2.5 seconds, which is primarily due to a cold start. You can also see from the graph that

for 500 generators the delay decreases over time, this is due to the automatic scaling of

deployed resources.

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

62

Figure 4. Measurement results

Conclusion

The implementation of software for data collection and monitoring systems has

developed further. Proposed software system for data collection and monitoring of vehicle

status is different from others with the ability to integrate with any vehicles and focused on

the use of both individual users and businesses.

REFERENCES

1. Fan, Y., Khattak, A. J., & Shay, E. (2007). Intelligent transportation systems: What do

publications and patents tell us? Journal of Intelligent Transportation Systems: Technology,

Planning, and Operations, 11(2), 91-103.

2. Rubel H.L., Likhouzova T.A. Problems with effective traffic management // Inter-

branch scientific and technological digest «Adaptive systems of automatic control» № 1(38),

2021 – p.62-67

3. Kuznetsov Denis, Zakharova Maria, Liuta Maiia (2021) // Criteria for evaluation of

efficiency of remote administration software // Young Scientist #1 (89) January, 2021, pp 129-132

4. Fleetio: Fleet Management Software and Maintenance System // URL:

https://www.fleetio.com/ [accessed 23.10.2021]

5. Momentum IoT // URL: https://momentumiot.com/ [accessed 23.10.2021]

6. Onfleet | Power your deliveries // URL: https://onfleet.com/ [accessed 23.10.2021]

7. IBM Availability levels // URL: https://www.ibm.com/docs/en/i/7.3?topic=roadmap-

deciding-what-level-availability-you-need [accessed: 2021-11-01]

8. Krzysztof Zatwarnicki, Anna Zatwarnicka (2012) // Estimation of Web Page

Download Time // International Conference on Computer Networks (2012) // Poland, Opole

9. Ingeno, Joseph (2018) // Software Architect's Handbook // Packt Publishing. p. 175.

ISBN 178862406-8.

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

63

https://www.fleetio.com/
https://momentumiot.com/
https://onfleet.com/
https://www.ibm.com/docs/en/i/7.3?topic=roadmap-deciding-what-level-availability-you-need
https://www.ibm.com/docs/en/i/7.3?topic=roadmap-deciding-what-level-availability-you-need
https://en.wikipedia.org/wiki/Packt_Publishing
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/178862406-8

10.Robert C. Martin (2004) // YAGNI // URL: https://www.artima.com/weblogs/

viewpost.jsp?thread=36529 [accessed 23.10.2021]

11.Jens Coldewey (2010) // Decoupling of Object-Oriented Systems p.4-6. // Coldewey

Consulting, Munich, Germany

12.Seth Gilbert, Nancy A. Lynch (2012) // Perspectives on the CAP Theorem // Computer

Magazine pp.30-36 vol.45 no. 02

13.CosmosDB Overview // URL: https://azure.microsoft.com/ru-ru/services/cosmos-

db/#overview [accessed 23.10.2021]

14.Robert T Mason (2015) // NoSQL Databases and Data Modeling Techniques for a

Document-oriented NoSQL Database // Proceedings of Informing Science & IT Education

Conference (InSITE), 2015

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

64

https://www.artima.com/weblogs/%20viewpost.jsp?thread=36529
https://www.artima.com/weblogs/%20viewpost.jsp?thread=36529
https://azure.microsoft.com/ru-ru/services/cosmos-db/#overview
https://azure.microsoft.com/ru-ru/services/cosmos-db/#overview

	+Belous, Krуlov, Anikin 2021
	+EN Стаття Тимошина та Южди
	+IoT_EN
	+Linevych
	+Serverless_EN
	+V. Nikitin, E. Krуlov, Y. Kornaga, V. Anikin edited
	+Yevhenii Vovk
	+Лихоузова
	+Лісовиченко
	+Писаренко Головатенко_
	+Писаренко Кульбака_en
	+Теленик
	+Тимошин
	+Тищенко - Стаття 2021
	Зміст
	УДК
	Про авторів
	Untitled
	Untitled

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 2
 Page size: same as current

 D:20211201145304

 Blanks
 Always
 2
 1

 D:20180918122136
 841.8898
 a4
 Blank
 595.2756

 70
 Tall
 1060
 190
 0
 1
 1

 CurrentAVDoc

 SameAsCur
 BeforeCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 0
 2

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 3 to page 139; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 70.87 points, vertical 34.02 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20211201151928

 1
 1

 BR

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1077
 169
 0
 1
 R0
 12.0000

 Odd
 3
 SubDoc
 139

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 34.0157

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 2
 139
 138
 5b9c048a-7f1f-4c3b-8081-9a223a0db7c7
 69

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 3 to page 139; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 70.87 points, vertical 34.02 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20211201151937

 1
 1

 BL

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1077
 169

 0
 1
 R0
 12.0000

 Even
 3
 SubDoc
 139

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 34.0157

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 3
 139
 137
 5c6d6052-58f8-41d7-bdf1-6f772e769ec4
 68

 1

 HistoryList_V1
 qi2base

