MIi>XBiOMUH HAyKOBO-TEXHIYHUM 30ipHUK «AAlITUBHI CUCTEMH aBTOMAaTHUYHOTO yIpaBmiHHD» Ne 1 (40) 2022

UDC 004.65
V. Nikitin, E. Krylov

COMPARISON OF HASHING METHODS FOR SUPPORTING OF CONSISTENCY
IN DISTRIBUTED DATABASES

Abstract: Distributed systems provide ability to use any services independently from
users’ geolocation and to save productivity on the high level. Highly loaded systems need
particularly meticulous optimization at all levels. Such systems include government, military
and financial institutions, social networks, 10T and more. Data technologies are improving
and giving developers more opportunities to enhance the usage of existing protocols. The
growing intensity of information exchange makes it difficult to maintain consistency in distri-
buted systems. This, in turn, may lead to the quality deterioration of end-user services or im-
pose a number of restrictions with increasing latency. As both scenarios are undesirable, there
is a need to improve parallel service processes to maintain consistency.

One of the undesirable factors is the possibility of collisions during the synchroniza-
tion of distributed database nodes. Hashing is applied to quickly check the changes. This me-
thod is simple in terms of implementation, but collision is unstable, especially in conditions of
different variations of input data sets. Conflict situations may not be isolated due to the rapid
updating of data and changes in their volume, which in turn produces a large number of com-
binations. In any case, the storage of outdated data can create conflict situations at the user
level. The criticality of this depends on the industry where the system operates and how im-
portant data consistency is. For example, domain DNS updates are performed once a day and
in most cases this is sufficient, but in the case of military systems this is unacceptable, as it
can lead to human loss and financial loss due to the use of obsolete information.

Keywords: distributed databases, distributed systems, hashing, hash functions, consis-
tency, collision resistance, data consistency.

Introduction

Consistency creates the illusion of business continuity in the system. To support it, it is
necessary to have a complex mechanism that requires strict optimization not only on a single
node, but also when transporting service metrics between nodes.

Gossip protocol is applied to maintain consistency in distributed systems. It describes
the interaction of nodes with each other for communication. In distributed databases, it is used
to exchange information about the current state of nodes and start synchronization when dis-
crepancies are found [1].

The Merkel tree is used to identify discrepancies in distributed databases. This struc-
ture contains summary information about the large amounts of data (such as tables or docu-
ments). The hash function for receiving the target digest has a key place.

It is mathematically known that each hash function has a collision probability, but the

© V. Nikitin, E. Krylov

48 ISSN 1560-8956

MIiXBiOMUHH HAyKOBO-TEXHIYHUM 30ipHUK «ANAalITUBHI CUCTEMH aBTOMAaTHYHOTO yIpaBmiHHD» Ne 1 (40) 2022

main issue is the computation time to find such input. This leads to the creation of new and
more stable algorithms. This problem is usually solved by size enlarging the resulting digest
and ensuring even distribution.

Formulation of the problem

To detect changes, it is necessary to have "fingerprints" of data from different nodes and
compare them. If the "prints" are different, then the consistency is broken and you need to start
the synchronization process. The Merkel tree is a data structure that contains the resulting in-
formation for certain data blocks [2]. You can see an example of this data structure in fig. 1.

The principle of operation of this structure is quite simple:

1) a hash is calculated for each data block;

2) pairwise concatenation of calculated hashes;

3) if a hash is left without a pair, it remains without concatenation;

4) each value obtained becomes an input block for finding the hash again;

5) repeat steps 1 to 4 until the root hash remains.

Top Hash
hash(::}:i)
Hash Hash
0 1
nashl e) ash(1)
Hash Hash Hash Hash
0-0 0-1 1-0 o
hash(L1) hash(L2) hash(L3) hash(L4)
Data
N - - - Blocks

Figure 1. The structure of the Merkel tree

The resulting root hash is used to check between different nodes of the distributed sys-
tem. Multi-stage hashing cannot guarantee the absence of collisions that can occur when
transferring different blocks of data to a hash function. Mathematically, it is possible to calcu-
late the total number of possible unique hash values, but it is impossible to even predict the
possible number of collisions. This is a consequence of the use of algorithms that have been
obtained empirically and are based entirely on the randomness of the impact of bitwise opera-
tions on the resulting set of bits.

ISSN 1560-8956 49

MIiXBiOMUHH HAyKOBO-TEXHIYHUM 30ipHUK «ANAalITUBHI CUCTEMH aBTOMAaTHYHOTO yIpaBmiHHD» Ne 1 (40) 2022

There is a great variety of hashing algorithms and the question arises as to the feasibil-
ity of using the developed algorithm PH-1 [3]. Comparison of algorithms can be done by
many criteria, but this is impractical, because the direction of research is the consistency of
distributed databases, and the collision vulnerabilities of existing algorithms are of a particu-
lar interest. Also, the aim is to determine the limitations for the developed algorithm PH-1.

Collision stability of the existing hashing algorithms

Hashing is a convenient method of comparing data to determine their identity. Any
destination uses this explicitly or implicitly: verification of sent files and network packets,
secure storage of passwords, fast data retrieval. This leads to a wide variety of hash functions:
hash functions based on division, multiplicative hashing schemes, hashing of variable length
strings, cryptographic hash functions [3]. Algorithms of the latter type should be as resistant
to collisions as possible, as they are used to create certificates.

Comparison with hash functions based on division

This is the simplest and a very conflict-resistant algorithm. The hash is the value that
remains due to the remainder of the division by the maximum number of hashes:

h(K)=K mod M, 1)
where K — input data; M — maximum number of hashes.

For the experiment we can take the function as in formula 2.

h(K)= Y K[i] mod 70, 2

This function is a simplified case of functions of this kind. An arbitrary set of bytes is
fed to the input, from which the sum is obtained and the operation of obtaining the remainder
when dividing by 70 is performed. In the case when K is the text, the division into blocks is
based on the code system.

For example, in the case of ASCII, each term is a number from 0 to 255, because 1
byte is used to encode one character. In the case of UTF-8, the character can be encoded from
2 to 4 bytes, which significantly increases the value of the term.

It is obvious that we will get the same hash value infinitely with increasing the amount
by 70. The results of the calculations are given in Table 1.

You can see that all four examples lead to the same hash value using division-based
algorithm. The results of PH-1 algorithm indicate that PH-1 is collision-resistant to collision
vulnerabilities due to the rules of modular arithmetic, because for all the same values were
obtained unique hashes.

Comparison with cryptographic hash functions

Additional requirements are imposed on cryptographic hash functions: irreversibility,
resilience to collisions of the first kind and resilience to collisions of the second kind.

The most common cryptographic hashing algorithms are MD5 and the SHA family,
the algorithms of which were discussed in a previous article [3].

To create a dataset, a special algorithm was applied, which uses the construction of a
differential path and collision with the selected MD5 prefix. This enabled us to obtain

50 ISSN 1560-8956

MIiXBiOMUHH HAyKOBO-TEXHIYHUM 30ipHUK «ANAalITUBHI CUCTEMH aBTOMAaTHYHOTO yIpaBmiHHD» Ne 1 (40) 2022

a dataset of 1000 pairs of files; each file is 128 bytes in size. Each pair is an example of a col-
lision, because by hashing each file from a pair and comparing it with the hash of another, the
same hash values are obtained. Fig. 2 shows the results of hashing 50 pairs of such files.

Table 1.

The results of hashing using a division-based and PH-1 algorithm

Input data Division-based PH-1 hash
hash

1000110 0 207

10001100 0 204

11010010 0 250

100011000 0 158

In fig. 2 you can see that different hash values were obtained because they have differ-
ent resulting bit sequences when using PH-1. Among the obtained hash values there were the
same in length, but differed radically in bit combinations. Hash values for the other 950 file
pairs are also different, indicating that the PH-1 is resistant to MD5 vulnerabilities.

After research, the SHA-1 algorithm is also not resistant to collisions and there are
ready algorithms for attacks on it, but the algorithm and implementation have not been made
public due to the avoidance of situations using the algorithm by hackers. Currently, there are
two messages in the public domain that result in the same hashes. The PH-1 algorithm was
used for these two files and we can see that different hash values were obtained because they
have different resulting bit sequences. The dataset from one pair is too small to draw conclu-
sions about collision resistance, but a positive result for the only available pair gives a credit
of confidence for future research in this area.

It is worth noting the shortcomings of the PH-1 algorithm. From the above mentioned
results (Fig. 1, Table 1) it can be seen that the hash length is not fixed compared to the same
MD5 and SHA. The problem is also not only the length but also the size of the resulting hash.
It depends entirely on the size of the input data and will grow proportionally. Based on the
above, it is possible to make assumptions about the limitations of PH-1.:

1) hashing of small data

From the Table 1 you can see that the hashing of 32-bit data resulted in an 8-bit hash,
I.e. 1 byte. This is far less than in case of using hash functions with a fixed hash length. In this
case, the MD5 hash would be 128 bits in size; SHA-1 would have 160 bits; SHA-2 would
have 224 bits and more [4].

2) hashing of particularly important data

Analyzing the conducted experiments, it is obvious that the algorithm has collision re-

ISSN 1560-8956 51

MIiXBiOMUHH HAyKOBO-TEXHIYHUM 30ipHUK «ANAalITUBHI CUCTEMH aBTOMAaTHYHOTO yIpaBmiHHD» Ne 1 (40) 2022

sistance to vulnerabilities of existing hashing algorithms and this gives credibility and feasi-
bility to use it despite the proportional increase in the size of the hash value.

" WW
600
500

400

——PH1
—e—MD5

JoemnHa pannx, Git

300

200

100

SEADL L LR P RS RSP RPRGEREEEDL LR D ES PSP

Na thaiiny

Figure 2. Comparison of hash lengths of PH-1 and MD5

CONCLUSIONS

Existing hashing algorithms are widely used. This affects collision resistance, as com-
pressing data of any size will inevitably result in collision hashes. As a result, the consistency of
distributed databases is compromised because hash functions are used to check for changes.

In practice, it was tested that the developed PH-1 algorithm has collision resistance to
hash algorithm vulnerabilities, such as division-based hashing and cryptographic algorithms
MD5 and SHA-1. In turn, this algorithm has a disadvantage in the form of the resulting hash
value proportional to the size of the input data. This makes it impossible to use the algorithm
to hash large data.

A possible use may be the hashing of small and important data. One of the possible
examples of application may be maintaining consistency in distributed databases of personal
information of users, bank details, analytics of financial transactions.

REFERENCES

1. Aguilera M.K., Terry D.B. The Many Faces of Consistency // IEEE Database En-
gineering Bulletin. 2016. Ne 39. C.3-13 URL.: http://sites.computer.org/debull/Al16mar/p3.pdf

2. Haider F. Compact Sparse Merkle Trees // OSF Preprints. 2018. Ne 955. C.1-8
URL.: https://doi.org/10.31219/0sf.io/8mcnh

3. Modification of hashing algorithm to increase rate of operations in NoSQL data-
bases / V. Nikitin Ta in. // Adaptive Systems of Automatic Control Interdepartmental scientific

52 ISSN 1560-8956

MIiXBiOMUHH HAyKOBO-TEXHIYHUM 30ipHUK «ANAalITUBHI CUCTEMH aBTOMAaTHYHOTO yIpaBmiHHD» Ne 1 (40) 2022

and technical collection. 2021. Ne 2 (39). C.39-43 URL:
http://asac.kpi.ua/article/download/247395/244688

4. Comparison of hash function algorithms against attacks: A review / A. Maetouq ta
iH. // International Journal of Advanced Computer Science and Applications. 2018. Ne 9 (8).
C.98-103 URL.: https://thesai.org/Downloads/ Volume9No8 /Paper_13-
Comparison_of Hash_Function_Algorithms.pdf

ISSN 1560-8956 53

https://thesai.org/Downloads/

	ФІОТ
	Akhaladze_A, O. Lisovychenko
	Akhaladze_I, O. Lisovychenko
	Lesohorskyi, E. Zharikov
	Mamuta, T. Likhouzova
	Mokryi, I. Baklan
	Mykhailenko, G. Mikhnenko, J. Chunyak, O. Petruchenko, V. Bachynskiy
	Nikitin, E. Krуlov
	Oliinyk, A. Ryzhiy
	Protsiuk_Gavrylenko_2022
	Reznikov_and_Slavgorodski
	Semchenko, Y. Oliinyk, O. Demydenko
	Stenin, M. Soldatova, O. Polshakova, S. Stenin
	Stenin, V.Pasko, I.Drozdovich, M.Soldatova, S.Stenin
	Yudov, K. Ostapchenko
	Павлов, М.М. Головченко, М.М. Ревич
	Романенко, О.Д. Фіногенов
	Смолій, Н.В. Смолій
	УДК УКР
	УДК АНГЛ

 HistoryItem_V1
 AddNumbers

 Range: From page 154 to page 157; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 70.87 points, vertical 43.94 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20220704111832

 1
 1

 BR

 1
 1
 1
 0
 0
 154
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1188
 198
 0
 1
 R0
 12.0000

 Odd
 154
 SubDoc
 157

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 43.9370

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 154
 158
 156
 144d1507-ffe4-420f-af46-f78a99a8d804
 2

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 154 to page 157; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 70.87 points, vertical 43.94 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20220704111843

 1
 1

 BL

 1
 1
 1
 0
 0
 154
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1188
 198

 0
 1
 R0
 12.0000

 Even
 154
 SubDoc
 157

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 43.9370

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 153
 158
 155
 091133e5-a6bf-488e-9d59-da8b523b7fd1
 2

 1

 HistoryList_V1
 qi2base

