
UDC 004.89, 004.912

Y. Bezliudnyi, V. Shymkovych,

P. Kravets, A. Novatsky, L. Shymkovych

PRO-RUSSIAN PROPAGANDA RECOGNITION

AND ANALYTICS SYSTEM BASED ON TEXT CLASSIFICATION

MODEL AND STATISTICAL DATA PROCESSING METHODS

Abstract: In this paper a neural network model for classifying the political polarity of text

has been developed, along with a database for training the neural network and an analytics

system for pro-Russian propaganda. This allows to classify the political polarity of the message

source based on its identifier, as well as to construct and display different networks that represent

useful insights about popular Twitter hashtags or Telegram channels that related to Russo-

Ukrainian War. Also, a user interface has been developed that allows users to interact with the

system.

Developed system will help people with navigation through the information space and

avoidance of pro-Russian propaganda.

Keywords: neural networks, text classification, text transformers, news, propaganda,

hashtags, networks, Telegram, Twitter.

Introduction

Propaganda is the dissemination of certain views by conveying various arguments,

truthful or semi-truthful facts, rumors, or outright lies with the aim of manipulating public

consciousness. Many methods based on social psychology research are used to carry out

propaganda, making it difficult for ordinary citizens to recognize the type of propaganda they are

exposed to while reading various mass media sources. Additionally, some segments of the

population are more susceptible to propaganda, such as people without higher education, children

and pensioners, emotional individuals, and some residents of southern and eastern regions of

Ukraine [1].

Therefore, it would be useful to develop a software system that could help verify the

information posted by users on social media and messaging platforms for political polarity and

pro-Russian rhetoric. It’s also useful to provide insights about which Telegram channels or

Twitter hashtags are pro-Ukrainian or pro-Russian and how they are interconnected.

Such system would help people navigate the information space more easily and avoid

unwanted pro-Russian propaganda.

© Y. Bezliudnyi, V. Shymkovych, P. Kravets, A. Novatsky, L. Shymkovych

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 15

Given the modern format of messages, replacement of a single word, emphasis in a

sentence, or the presence of an emoji in the text can change the message's meaning, which should

also be considered when developing such systems. Messages can also contain complex verbal

constructions, such as irony or sarcasm, which complicates the task of detecting propaganda [2].

Over the past decade, artificial neural networks have made significant progress in such

tasks as semantic analysis, classification, translation, text generation, and more [3-8].

Natural language processing requires a special architecture for neural networks to meet

the following requirements arising from the characteristics of text data:

- Support of variable-length data sequences;

- Tracking dependencies of different distances between data;

- Support of information about the sequence of data arrival.

The simplest model that meets all of the above requirements is the classic recurrent neural

network (RNN). Over time, this model has undergone improvements, giving rise to models such

as long short-term memory (LSTM) and gated recurrent units (GRU).

In recent years, models based on RNN have faced competition from models based on the

deep architecture of the Text Transformer. Unlike RNN, the Transformer does not require

sequential processing of data. Instead, the attention mechanism provides context for any position

in the input sequence. For example, if the input data is a natural language sentence, the

Transformer does not need to process its beginning before processing its end. Instead, the

Transformer determines the context that gives meaning to each word in the sequence. This

property enables task parallelization, reducing training time.

Since the release of the Transformer model, a number of models have been developed that

use it or its parts as a basis for their architecture, such as BERT, GPT, CTRL, XLM, XLNET, T5,

REFORMER, LONGFORMER, ELECTRA, and more.

Currently, there are several research studies focused on text classification using neural

networks. For example, researchers Rao A. and Spasoevich N. [9] used a technique that involves

word embeddings and an LSTM model to classify political polarity of messages collected from

the Twitter, categorizing them as either democratic or republican. Their developed model

achieved high accuracy of 87.57% on a test set. They also deployed a system that uses the trained

model and provides access for integration purposes.

In another study, researchers from the Monterrey Institute of Technology [10] classified the

sentiment (as positive or negative) of Twitter messages related to the Russo-Ukrainian War in

different countries worldwide using the VADER [11] sentiment analyzer and an RNN model. This

approach achieved good accuracy of 93% on the validation set and near 90% accuracy on the test set.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 16

The aim of this work is to automate the process of identifying the political bias of texts

using neural networks, build a database for training the model, and develop software tools based

on the trained model.

Classification model construction

To solve the task of text classification, various neural network models can be used,

ranging from relatively simple RNN models to deep models based on text transformers. The

choice of a particular model depends on the details of the specific task and the desired accuracy

of the result.

Recurrent neural networks are a class of artificial neural networks specifically designed

for processing sequential data. RNNs are widely used in many areas, such as natural language

processing, speech recognition, image captioning, text and audio generation, due to their ability

to model temporal dependencies in sequential data.

At the core of RNN is a set of recurrent connections that allow the network to store

memory of previous input data. The network takes a sequence of vectors as input data. RNN

processes the sequence step by step, updating its hidden state at each step, using the current input

vector and the previous hidden state.

The hidden state of an RNN can be considered as a compressed representation of the

entire sequence of input data observed up to that point in time. This compressed representation

can be used for predicting the next element in the sequence or for classifying the entire sequence.

Depending on the task at hand, an RNN model can have one or multiple inputs and

outputs.

RNN models are typically trained using the backpropagation through time (BPTT)

algorithm, which is a variant of the backpropagation algorithm adapted for sequential data.

The LSTM model is a special type of RNN architecture that is capable of learning long-

term dependencies because the memory, which is implemented by the classical RNN model, is

short-lived – at each training step, the information in the memory is combined with new

information and is completely overwritten after a few iterations.

The LSTM model does not use activation functions inside its recurrent components. Thus,

the stored value is not diluted over time, and the gradient does not disappear when using BPTT.

The key components of the LSTM module are the cell state and various filters. The cell

state can be thought of as the memory of the network that carries relevant information throughout

the module chain. Therefore, information from earlier steps will be present in much later steps,

negating the effect of short-term memory.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 17

As training progresses, the cell state changes, and information is added or removed from

the cell state by structures called filters.

Filters control the flow of information at the module's inputs and outputs based on certain

conditions. They consist of a layer of sigmoidal neural network and a pointwise multiplication

operation.

The sigmoidal layer returns value in the range [0;1], which indicate what portion of each

block of information should be allowed to pass through the network. Multiplication by this value

is used to allow or prohibit the flow of information inside and outside of the memory. For

example, the input filter controls the degree to which a new value enters the memory, while the

forget filter controls the degree to which a value is retained in the memory. The output filter

controls the degree to which the value in the memory is used in the calculation of the output

activation function.

The Transformer model is designed to process sequences of variable length inputs without

relying on RNN. Instead, the Transformer model relies on the self-attention mechanism, which

allows it to capture the dependencies between different positions in a sequence.

The architecture of the Transformer is shown in Fig. 1.

Figure 1. The architecture of the Transformer

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 18

The encoder consists of encoding layers that process the input data sequentially one layer

at a time, while the decoder consists of decoding layers that do the same with the output of the

encoder. The function of each encoder layer is to create a representation that contains information

about which parts of the input data are relevant to each other. Each encoder layer passes its

representation to the next encoder layer as input. Each decoder layer does the opposite, taking all

the representations and using their contextual information to generate the output sequence. To do

this, both the encoder and decoder levels use an attention mechanism. For each part of the input

data, the attention mechanism computes the importance of each other part and uses it to obtain

the result. Each decoder layer has an additional attention mechanism that receives information

from the outputs of the previous decoders before the decoder layer receives information from the

encoder representations. Both the encoder and decoder have a feedforward neural network for

additional processing of the outputs and contain residual connections and normalization layers.

The attention function can be described as a mapping from a query and a set of key-value

pairs to output data, where the query, keys, values, and output data are all vectors. The output is

computed as a weighted sum of values, where the weight assigned to each value is computed

using the compatibility function of the query with the corresponding key. In practice, the

attention function is computed on a set of queries that are packed together in a matrix . Keys

and values are also packed together in matrices and , respectively. The output matrix is

computed using the following formula:

, ,
dim

T
QK

A Q K V softmax V
K

 (1)

Instead of computing a single attention function using -dimensional keys, values,

and queries, the authors of the Transformer model found it beneficial [12] to linearly project the

queries, keys, and values times with different learned linear projections to , , and

dimensions, respectively. For each of these projected versions of queries, keys, and values, the

attention function is computed in parallel, yielding a -dimensional output value. These values

are concatenated and then projected again, resulting in the final values of the multi-headed

attention function according to the following formula:

The values of are determined by the following formula:

In these formulas,

,
 , and

 are parameter matrices that define linear projections

for the matrices , , and onto dimensions , , and , respectively. is a parameter

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 19

matrix that defines the linear projection of the concatenated output values of the attention

function of each layer of the encoder to the output dimension .

A comparison of the blocks for computing the functions of classic and multi-head

attention is shown in Fig. 2.

Figure 2. A comparison of the blocks for computing

the functions of classic and multi-head attention

This paper presents a neural network model for classifying the political polarity of text,

based on the deep Bidirectional Encoder Representations from Transformers (BERT) model

developed by Google in 2018 [13]. BERT is a modified version of the Transformer model, which

learns contextual relationships between words in text. In its classic form, the Transformer

consists of two separate parts – an encoder and a decoder, but since BERT's goal is to create a

language model, only the encoding mechanism is needed.

The key technical innovation of BERT is the use of bidirectional training. This approach

differs from previous models that considered text sequences from left to right or combined left-

to-right and right-to-left training. The results show that a language model trained bidirectionally

has a deeper understanding of linguistic context than unidirectional language models.

To implement bidirectional learning, the BERT model uses two strategies: constructing a

Masked Language Model (MLM) and predicting the next sentence (Next Sentence Prediction, NSP).

The MLM strategy involves replacing 15% of the words in each input sequence with the

[MASK] token before feeding them to BERT. The model then tries to predict the original values

of the masked words based on the context provided by the other unmasked words.

The algorithm for predicting the masked words is as follows:

1. A classification layer is added on top of the encoder output;

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 20

2. The output vectors are multiplied by a projection matrix to convert them to the

vocabulary dimension;

3. The probabilities of each word in the vocabulary are computed using the softmax

function.

The BERT loss function takes into account only the prediction of masked values and

ignores the prediction of unmasked words.

The NSP strategy involves BERT receiving pairs of sentences as input during training and

learning to predict whether the second sentence in the pair is the next sentence in the input text.

During training, 50% of the input data consists of pairs where the second sentence is the next

sentence in the input text, while the other 50% randomly selects the second sentence from a pool

of sentences.

To help the model distinguish between two sentences during training, the input data is

processed as follows:

1. The [CLS] marker is inserted at the beginning of the first sentence, and the [SEP]

marker is inserted at the end of each sentence.

2. A sentence projection vector, indicating either sentence A or sentence B, is added to

each token.

3. A position projection vector is added to each token to indicate its position in the

sequence.

To predict whether the second sentence is truly related to the first, the following steps are

taken:

1. The entire input sequence passes through the BERT model.

2. The output from the [CLS] marker is transformed into a vector of shape 2x1 using a

simple classification layer.

3. The probability of the second sentence following the first is calculated using the

softmax function.

During BERT model training, the MLM and NSP strategies are executed together to

minimize the combined loss function of both strategies.

To use the BERT model in solving specific tasks, it is first pre-trained on a large text

corpus. Standard text corpora for pre-training the BERT model include the WikipediaCorpus

(~4.4 million articles) and the BookCorpus (~11,000 books).

After pre-training, the model is fine-tuned on the given dataset. The pre-training and fine-

tuning process for the BERT model for a specific task is depicted in Fig. 3.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 21

Figure 3. Pre-training and fine-tuning process for the BERT model

BERT model with 4 encoder layers, 8 attention heads, and an input vector size of 512

() was chosen as the core for the classification model.

Building a database for training a classification model

The first step in creating a database for training a classification model was to define the

classes that the model would use to determine the sentiment of text. Three classes were selected:

“pro-Ukrainian”, “pro-Russian”, and “neutral”.

The next step was to determine the ratio of training, validation, and testing data, and their

quantity in the database. The ratio of 16:1:1 was chosen. Accordingly, it was decided to create a

database where each class contains 9600 unique messages in the training set, 1200 in the

validation set, and 1200 in the testing set, and then apply data augmentation techniques to double

the size of the training data set. Therefore, the database will contain a total of 67200 messages.

The messages were obtained from two sources: Telegram and Twitter. Obtaining

messages from Telegram was done using the telethon library. A list of popular Telegram channels

was compiled, and messages that fell into a specific class were collected. The number of selected

channels per class is 16 for the training set, 3 for the validation set, and 3 for the test set.

Messages from Twitter were obtained using the snscrape library. Similar to reading

messages from Telegram channels, a list of popular Twitter accounts was formed whose messages

fall under a specific class. The number of selected accounts per class is 10 for the training set, 2

for the validation set, and 2 for the test set.

The algorithm for reading messages is follows:

1. Read the last 500 messages from the source (Telegram channel or Twitter account);

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 22

2. Process the message text (remove rare characters, replace emojis with their text

counterparts, replace HTML symbols with their ASCII equivalents, mask links, and delete special

character combinations responsible for text formatting);

3. Select messages that have a length between 50 and 5000 characters, thus removing

messages that are too short or too long;

4. Translate the messages into English;

5. Save the successfully translated messages to a database, where each message

corresponds to a record with the message content;

Subsequently, a programmatic reduction in the number of read messages in each category

of each class was performed to achieve the desired amount.

After obtaining the desired number of messages, the final stage involved applying the

following data augmentation techniques to increase the training set: reverse translation, sentence

shuffling, and synonym replacement.

The process of reverse translation augmentation involves taking a source language

sentence or phrase, translating it to a target language, and then translating it back to the source

language. The resulting sentence may not be identical to the original source sentence, but it can

still be a valid training example.

Example of new sentence generation using reverse translation: “I have no time” (English)

→ “je n’ai pas le temps” (French) → “I do not have time” (English).

The technique of synonym replacement has a similar goal to that of double translation,

but in this technique, a certain percentage of words in the text are replaced with their synonyms,

according to a synonym dictionary.

Example of new sentence generation using synonym replacement: “This article will focus

on summarizing data augmentation techniques in NLP” → “This write-up will focus on

summarizing data augmentation methods in NLP”.

The sentence shuffling technique involves randomly shuffling sentences (or a certain

percentage of them) in the text. This technique helps prevent the model from paying excessive

attention to any particular order of sentence.

Example of new text generation using sentence shuffling: “My name is Helga. I like to eat

ice-cream” → “I like to eat ice-cream. My name is Helga”.

System implementation

The developed system represents an application consisting of a server-side and a client-

side component.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 23

The goal of the client-side component is to provide a fully functional graphical interface

through which the user interacts with the system. In the developed system, the graphical interface

is a web page that contains a number of panels, each of which serves either purely to display

certain data or to interact with the user by obtaining certain data from the user through input

form, processing the received data (either on the client-side or by directing the request to the

server-side), and displaying the result of processing the request.

The main page of the client-side component of the developed system contains the

following panels:

- A panel for entering a username of a Telegram channel or Twitter account, and

displaying the averaged classification result of messages in this source;

- A panel for displaying and configuring the network of the most popular hashtags in

Twitter related to the topic of the war in Ukraine, together with information about the political

polarity of each of them and their pairwise occurrence in messages;

- A panel for displaying and configuring the network of interactions of popular Telegram

channels, along with information about the political polarity of each of them;

- A panel for displaying statistics on changes in the popularity and political polarity of

hashtags and accounts in Twitter over time;

- A panel for displaying statistics on changes in the number of subscribers and political

polarity of Telegram channels over time;

The client-side component is implemented using the Angular framework, with the

TypeScript language.

The server-side component is responsible for receiving requests from the client,

processing them, and returning the result to the client. Structurally, the server-side component of

the developed system can be divided into a request processing level, a business logic level, a

level of working with the classification model, a level of reading and processing messages, and a

level of working with a database.

The request processing level consists of a set of controllers that receive requests, check

the source of the request and the correctness of the data that is coming in, and pass the request to

the business logic level.

The business logic level processes the received requests, if necessary, by accessing other

levels. This level implements the following functionality:

- Classifation of Telegram channel or Twitter account by username;

- Building a subnetwork of the most popular hashtags on Twitter based on the provided

configuration and the saved version of the network;

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 24

- Building a subnetwork of the popular Telegram channels based on the provided

configuration and the saved version of the network;

- Weekly creation of an updated version of the database and retraining the neural network

on fresh data;

- Weekly construction of network for Twitter and Telegram, based on which subnetworks

are built;

- Daily collection of statistics on changes in the popularity and political polarity of

hashtags and accounts on Twitter;

- Daily collection of statistics on changes in the number of subscribers and political

polarity of Telegram channels.

The algorithm for determining the political polarity of the message source using the given

link can be described as follows:

1. Determine the type of the news source, whether it is a Twitter account or a Telegram

messenger channel;

2. Read the latest () messages from the source;

3. Perform preliminary processing of the read messages using selected methods;

4. Choose the processed messages that have a length between 50 and 5000 characters,

thereby removing too short or too long messages;

5. Translate the messages into English;

6. For each translated message, extract its features using the selected approach;

7. For each translated message, determine its political polarity using a pre-trained

classifier and the extracted features. The classifier is considered as a function that maps elements

from the set of messages to the set of classification results. In this algorithm, the classification

result is a triple , where , , and () reflect the model's

confidence level in assigning the message to the pro-Ukrainian, pro-Russian, and neutral classes,

respectively;

8. Average the political polarity of the messages and return the averaged value as

the result of determining the political polarity of the news source and end the algorithm.

The algorithm for constructing the graph representing the network of the most popular

hashtags is as follows:

1. Read the last () messages from a given set of Twitter accounts;

2. Perform preprocessing on the read messages using selected methods;

3. Select the processed messages that have a length of 50 to 5000 characters and contain

a non-empty set of hashtags;

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 25

4. Group the processed messages by hashtags, thus forming a set ,

where , is the hashtag, is the set of messages containing the hashtag , and

each hashtag appears in a number of messages greater than the parameter ;

5. Build the set of vertices of the graph as follows:

5.1. For each hashtag in set , take percent of the messages from the set of messages

 in which this hashtag appears, but not less than the value of parameter () and

not more than the value of parameter

(). Denote this subset of messages as
 ;

5.2. Form the set

 , where

 ;

5.3. Translate all messages
 that are in the set ;

5.4. For each translated message, determine its political polarity using a pre-trained

classifier and extracted features from the message;

5.5. Determine the average political polarity of messages

;

5.6. Form the set of vertices , where

 , .

6. Based on the sets and , construct the set of edges of the graph as follows:

6.1. Form from the set the set of all possible pairs of graph vertices ;

6.2. For each vertex pair , determine the set of messages in which

thehashtags and , representing the given vertices, appear pairwise;

6.3. Form the subset from the set where the value

 , where is a

given parameter ();

6.4. For each pair in the subset , add an edge to the graph connecting vertices

 and with weight

.

7. Return the graph and complete the algorithm.

The algorithm for constructing a graph representing a network of popular Telegram

channels is as follows:

1. Read the last () messages from the specified set

 telegram channels. Define the set of processed channels ;

2. From the set of read messages, for each channel , select a subset of messages

containing links to other channels;

3. Perform preliminary processing of messages from a subset according to the selected

methods;

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 26

4. Select among the processed messages those with a length of 50 to 5000 characters

and form the set from them;

5. Form a set of links to channels , which are found in messages from the set

that have the number of subscribers greater than the parameter and which do not belong to

the set and the set of previously processed channels;

6. After searching for links to other channels from channels in the set , add channels

from the set to the set and check whether the number of processed channels

equal to the desired (). If so, go to step 7, otherwise, form the set of channels

 , and alternately perform steps 2 – 5 for the channels from the set , expanding the

set after processing the next channel, until:

6.1. Number of processed channels will be equal to the desired – then go to step 7;

6.2. All channels from the set are processed, but and – then

perform step 6, replacing the set with (or the set with the set in in the general case);

6.3. All channels from the set are processed, but and – then go

to step 7.

7. For each channel , read the last messages ();

8. Perform preliminary processing of messages from the set of read messages using the

selected methods;

9. Select among the processed messages those with a length of 50 to 5000 characters

and form the set from them;

10. Form the set ;

11. Based on the set , construct the set of vertices of the graph as follows:

11.1. Translate all messages of the set that are in the set ;

11.2. For each translated message, determine its political polarity using a previously

trained classifier and features extracted from the message;

11.3. Determine the average political polarity of messages

;

11.4. Form a set of vertices , where

 , –

number of subscribers to channel , – set of messages from channel with existing links to

other channels , which was found in step 5.

12. Based on the set , construct the set of edges of the graph as follows:

12.1. Form from the set the set of all possible pairs of vertices of the graph ;

12.2. For each pair of vertices , determine the set of messages in which

there were references to the channels and representing the given vertices;

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 27

12.3. Form a subset from the set , where , where is a given

parameter ();

12.4. Translate all messages ;

12.5. For each translated message, determine its political polarity using a

previously trained classifier and features extracted from the message;

12.6. Determine the average political polarity of messages

;

12.7. Form the set of edges , where

 ,

 , .

13. Return the graph and complete the algorithm.

Let the given network of the most popular hashtags be represented by the graph

 and the parameters

 . Then, the algorithm for constructing the subgraph , which

represents the subnet of the most popular hashtags, looks as follows:

1. Form the set

2. Form the set

3. Return the graph and complete the algorithm.

Let the given network of the most popular Telegram channels, represented by the graph

 and the parameters

 ,

where

 are set.

Then, the algorithm for constructing the subgraph , which represents the subnetwork of the

most popular Telegram channels, looks as follows:

1. Form the set

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 28

2. Form the set

3. Return the graph and complete the algorithm.

The server part was implemented in the Python programming language. Tensorflow and

keras libraries were used to work with neural networks. To read messages, telethon and snscrape

libraries were used. To increase the data, nlpaug library was used. To translate messages,

googletrans library was used. Networkx and matplotlib libraries were used to construct and

display graphs.

The structure of implemented classification model is shown in Fig. 4.

Figure 4. The structure of implemented classification model

Classification model training parameters are described in Table 1.

Table 1.

Classification model training parameters

Parameter Value

Number of epochs 3

Initial learning rate

Loss function Categorical Crossentropy

Performance metrics Categorical Accuracy

Optimization method AdamW

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 29

In addition to the parts described above, the structure of the software solution also

includes the PostgreSQL database, which is accessed by the server part.

System testing

PC characteristics on which the system was tested:

1. The clock frequency of the processor is 2.6 GHz;

2. 6 physical cores, 12 logical processors;

3. 16 GB of RAM;

4. Available NVIDIA GeForce GTX 1660 Ti video card.

The following technical requirements were set before developing the system:

1. The accuracy of the text classification should be not less than90% on the training

sample, and not less than 80% on the test sample;

2. The minimum and maximum number of vertices of the graph of the most popular

hashtags in the Twitter network and the graph of the interaction of popular Telegram channels are

10 and 100, respectively;

3. The maximum time for determining the political polarity of the message source is 10

seconds.

The results of learning the developed model are as follows:

1. Accuracy of text classification on the training set: 95%;

2. Accuracy of text classification on the test set: 83%;

3. The average study time during the epoch is 9 minutes.

The results of testing the system's average request processing time:

1. Determining the political polarity of the message source - 7 s;

2. Construction and display of subgraphs based on the transferred configuration and

saved version of the graph - 500 ms.

The results satisfy the technical requirements that was set before developing the system.

Conclusions

A model for the classification of the political polarity of the text has been developed, and a

database for its training has been created. A software application has been implemented that uses

the functionality of a trained model to generate various statistics related to pro-Russian propaganda.

The implemented application meets the requirements for speed and classification quality. Further

improvement of the quality of model classification can be done with the help of using more

complex architecture or a combination of several architectures that focus on different subtasks,

improving the quality of training data using more complex message processing methods, etc.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 30

REFERENCES

1. Суспільно-політичні настрої населення України: результати опитування,

проведеного 9-17 грудня 2021 року методом особистих (“face-to-face”) інтерв’ю. URL:

https://www.kiis.com.ua/?lang=ukr&cat=reports&id=1080&page=1

2. Драбюк С.С. Пропаганда та її види. Шляхи протидії пропаганді. // Аналітично-

порівняльне правознавство. – 2022. – №1. – с. 153-157. https://doi.org/10.24144/2788-

6018.2022.01.28

3. Shymkovych V., Telenyk S., Kravets P. Hardware implementation of radial-basis

neural networks with Gaussian activation functions on FPGA. // Neural Computing and

Applications. – 2021. – 33(15): 9467-9479. https://doi.org/10.1007/s00521-021-05706-3

4. Dreyfus G. Neural Networks: Methodology and Applications. // Springer-Verlag,

Berlin. – 2005. – 498 p. https://doi.org/10.1007/3-540-28847-3

5. Kravets P., Nevolko P., Shymkovych V., Shymkovych L. Synthesis of High-Speed

Neuro-Fuzzy-Controllers Based on FPGA. // 2020 IEEE 2nd International Conference on

Advanced Trends in Information Theory (ATIT). – 2020. – 291-295.

https://doi.org/10.1109/ATIT50783.2020.9349299

6. Bezliudnyi Y., Shymkovysh V., Doroshenko A. Convolutional neural network model

and software for classification of typical pests. // Prombles in programming. – 2021. – 4: 95-102.

https://doi.org/10.15407/pp2021.04.095

7. Bouvier M., Valentian A., Mesquida T., Rummens F., Reyboz M., Vianello E., Beigne

E. Spiking neural networks hardware implementations and challenges: a survey. // ACM Journal

on Emerging Technologies in Computing Systems. – 2019. –

15:22. https://doi.org/10.1145/3041033

8. Gonçalves S., Cortez P., Moro S. A deep learning classifier for sentence classification

in biomedical and computer science abstracts. // Neural Computing and Applications. – 2020. –

32: 6793–6807. https://doi.org/10.1007/s00521-019-04334-2

9. Rao A., Spasojevic N. Actionable and Political Text Classification using Word

Embeddings and LSTM.// arXiv:1607.02501 – 2016. – 9 p.

https://doi.org/10.48550/arXiv.1607.02501

10. Geovany I., Arturo J. A sentiment analysis of the Ukraine-Russia conflict tweets using

Recurrent Neural Networks.– 2022. – 5 p.

11. VADER-Sentiment-Analysis. URL: https://github.com/cjhutto/vaderSentiment.

12. Vaswani A., Shazeer N., Parmar N., Uszkoreit J. Attention Is All You Need. //

arXiv:1706.03762 – 2021. – 15 p. https://doi.org/10.48550/arXiv.1706.03762

13. Devlin J., Chang M., Lee K., Toutanova K. BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. // arXiv:1810.04805– 2018. – 16 p.

https://doi.org/10.48550/arXiv.1810.04805

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 31

https://www.kiis.com.ua/?lang=ukr&cat=reports&id=1080&page=1
https://doi.org/10.1007/s00521-021-05706-3
https://doi.org/10.1007/3-540-28847-3
https://doi.org/10.1109/ATIT50783.2020.9349299
https://doi.org/10.15407/pp2021.04.095
https://doi.org/10.1145/3041033

	Albrekht_Pysarenko_2++
	Albrekht_Pysarenko++
	Article, Bezliudnyi Y.++
	Dmitriy_Gutman,_Olena_Syrota++
	Drahan_Pysarenko++
	Gavrylenko О., Zhurakovska О., Kogan А., Bogdanova N., Khomenko О.++
	Kostiantyn Hazin, Inna V. Stetsenko++
	Mykhailenko V., Chunyak J., Geraskin O., Kovalevskiy M.++
	O. Rolik, O. Amons, K. Ulianytska, M. Khmeliuk, A. Kovalska, A. Hrytsenko, K. Palii++
	Oliinyk V., Matviichuk I.++
	Palii V., Zhurakovska O.++
	Polshakova О., Zhuravlov D.++
	Smolij V., Smolij N., Lisovychenko O.++
	Y. Timoshin, M. Shevchenko++
	Бернатович А., Стеценко І.++
	Дуда В.О., Ролік О.І.++
	Іванов А.І., Онищенко В.В.++
	Нестеренко К., Стеценко І.++
	Новиков Д.М., Полторак В.П.++
	Павлов О., Халус О., Місюра О., Мельников О., Медведєв М.++
	Рибачук, С.Д. Жевакін++
	Чимшир В.І., Теленик С.Ф., Ролік О.І., Жаріков Е.В.++
	ЗМІСТ
	УКР_УДК
	АНГЛ_УДК
	Про автора

 HistoryItem_V1
 AddNumbers

 Range: From page 1 to page 263; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 70.87 points, vertical 55.28 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20230502112118

 1
 1

 BR

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1024
 228
 0
 1
 R0
 12.0000

 Odd
 1
 SubDoc
 263

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 55.2756

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 0
 263
 262
 77c2dfb0-c899-4196-8713-8fb9847fc83c
 132

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 1 to page 263; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 70.87 points, vertical 55.28 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20230502112129

 1
 1

 BL

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1024
 228
 0
 1
 R0
 12.0000

 Even
 1
 SubDoc
 263

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 55.2756

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 1
 263
 261
 2f2f466d-2464-423c-8ada-ca0fa55515a2
 131

 1

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 2
 Page size: same as current

 D:20230502112401

 Blanks
 Always
 2
 1

 D:20180918122136
 841.8898
 a4
 Blank
 595.2756

 70
 Tall
 818
 268
 0
 1
 1

 CurrentAVDoc

 SameAsCur
 BeforeCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 0
 2

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 261 to page 263; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 70.87 points, vertical 55.28 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20230503145117

 1
 1

 BR

 1
 1
 1
 0
 0
 261
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1024
 228
 0
 1
 R0
 12.0000

 Odd
 261
 SubDoc
 263

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 55.2756

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 260
 264
 262
 25bc8610-095e-4250-ab3a-6553b44a297e
 2

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 261 to page 263; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 70.87 points, vertical 55.28 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20230503145126

 1
 1

 BL

 1
 1
 1
 0
 0
 261
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1024
 228

 0
 1
 R0
 12.0000

 Even
 261
 SubDoc
 263

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 55.2756

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 261
 264
 261
 7038c4c8-4794-45be-bbc9-86c9d9558cf5
 1

 1

 HistoryList_V1
 qi2base

