

UDC 004.65

Y. Kornaga, Yu. Bazaka, E. Marienko

WAYS TO OPTIMIZE SQL QUERIES TO IMPROVE

DATABASE PERFORMANCE IN HIGH-LOAD SYSTEMS

Abstract: SQL statements are used to retrieve information from a database. In most

cases, these queries are executed very slowly, the reason for this is the low quality of their

writing. For better performance, we need to use faster and more efficient queries. This article

shows you how to optimize SQL queries for better performance. The topic of query

optimization is very broad, but we will try to cover the most important aspects of this issue. In

this paper, I do not focus on in-depth database analysis, but focus on simple hints and tips for

setting up queries that can be used to immediately increase productivity.

Keywords: SQL, optimization, database, query, performance, analysis, data

processing.

Problem Statement

SQL is an information-logical language designed to describe, modify and extract data

stored in relational databases. Over time, the SQL language has become more complex:

enriched with new constructs, provided the ability to describe and manage new saved objects,

which is why in this article I try to present possible options for optimizing queries. Query

customization requires knowledge of techniques such as cost-based and heuristic optimizers,

as well as the tools provided by the SQL platform to explain the query execution plan.

The best way to adjust performance is to try to write queries in different ways and

compare their ease of reading and execution. The methods presented in this work have been

personally tested by me, the justification for their use has been experimentally confirmed.

Proposed solution and comparison with existing solutions

1. Use the column name instead of * in the SELECT statement

If you only need to select a few columns from the table, you do not need to use

SELECT *. Although it is easier to write, such a query takes much more time to execute in

the database. Selecting only the columns you want can reduce the size of the resulting table,

so you can reduce network traffic and, in turn, increase the overall query efficiency[1].

Example:

Initial query: SELECT * FROM Users;

Optimized query: SELECT name, age, surname, location, gender, identificatory

FROM Users;

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 Y. Kornaga, Yu. Bazaka, E. Marienko

 ISSN 1560-8956 26

Figure 1. Comparison of query execution speed before and after optimization

2. Avoid using the HAVING keyword in the SELECT statement

The HAVING expression is used to filter rows after grouping data from a table using

the GROUP BY expression. Its use is redundant in the SELECT statement. It works as

follows: based on the table obtained with SELECT, it compares the filtering condition and the

row, and based on the result, it is decided to add a row to the resulting sample or not[2].

Example:

Initial query: SELECT age, count (age), avg (age) FROM Users GROUP BY age

HAVING id! = 10 AND id! = 6;

Optimized query: SELECT age, count (age), avg (age) FROM Users WHERE id! = 10

AND id! = 6 GROUP BY age;

Figure 2. Comparison of query execution speed before and after optimization

3. Get rid of unnecessary DISTINCT operators

For example, in the following query, the keyword DISTINCT is redundant because

table_name contains the primary key p.ID, which is part of the result set. Using both

DISTINCT and the primary key is a kind of tautology[3].

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 27

Example:

Initial query: SELECT DISTINCT * FROM Users JOIN Product ON Users.id =

Product.id WHERE Users.id = 1;

Optimized query: SELECT * FROM Users JOIN Product ON Users.id = Product.id

WHERE Users.id = 1;

Figure 3. Comparison of query execution speed before and after optimization

4. Avoid subqueries

Using subqueries is very resource intensive, the existing alternative in the form of

JOIN is much faster and requires fewer resources. Subqueries are mainly used in ALL, ANY,

EXISTS constructions. Unrelated subqueries, or queries with more than one table in FROM,

can be executed for each row in the resulting sample, which can lead to an excessive increase

in the number of these queries[5].

Example:

Initial query: SELECT * FROM Product WHERE Product.prod_id = (SELECT

Users.prod_id FROM Users WHERE Users.id = 356;

Optimized query: SELECT Product. * FROM Product, Users WHERE

Product.prod_id = Users.prod_id AND Users.id = 356;

5. Using the IN operator

The IN predicate can be used for indexed search, which will significantly increase the

speed of finding the desired data. The list inside IN must contain only constants and values

that are constant[7].

Example:

Initial query: SELECT * FROM users WHERE users.id = 14 OR users.id = 17;

Optimized query: SELECT * FROM users WHERE users.id IN (14, 17);

6. Use EXISTS instead of DISTINCT

The DISTINCT keyword selects all columns in the table and then removes duplicates

from them. And with EXISTS you can avoid having to return the entire table.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 28

Example:

Initial query: SELECT DISTINCT c.country_id, c.country_name FROM SH.countries

c, SH.customers e WHERE e.country_id = c.country_id;

Optimized query: SELECT c.country_id, c.country_name FROM SH.countries c

WHERE EXISTS (SELECT 'X' FROM SH.customers e WHERE e.country_id =

c.country_id);

Figure 4. Comparison of query execution speed before and after optimization

7. Using UNION ALL instead of UNION

The UNION ALL expression works faster than UNION because the UNION ALL

operator does not consider duplicates, unlike UNION which looks for duplicates when

selecting strings, whether they exist or not[8-9].

Exemple:

Initial request: SELECT cust_id FROM SH.sales UNION SELECT cust_id FROM

customers;

Optimized query: SELECT cust_id FROM SH.sales UNION ALL SELECT cust_id

FROM customers;

Figure 5. Comparison of query execution speed before and after optimization

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 29

Conclusion

Query optimization is a necessary skill that database administrators and application

developers must have to increase overall system performance. The purpose of this work is to

provide a list of possible SQL scripts, the use of which will significantly reduce the time

required to develop and maintain databases. Even with a strong infrastructure, there is a risk

that performance may be significantly impaired by inefficient requests. Queries have a very

large impact on the speed of the database, and with their optimization you can achieve a

significant increase in productivity.

Therefore, I recommend that you carefully follow the general tips for improving the

SQL queries that were presented above. These tips are just one of the many ways to optimize

your databases, but their use is a must for all developers.

REFERENCES

1. Schwartz B. High Performance MySQL: Optimization, Backups, and Replication /

B. Schwartz. - Sebastopol: O'Reilly Media, 2012. - 826 p.

2. Dubois P. MySQL. Collection of recipes / P. Dubois. - Sebastopol: O'Reilly Media,

2015. - 1056 p.

3. Williams H. Learning MySQL: Get a Handle on Your Data / H. Williams. -

Sebastopol: O'Reilly Media, 2006. - 618 p.

4. Forta B. MySQL Crash Course / B. Forta. - Indianapolis: Sams Publishing, 2005. - 336 p.

5. Pipes J. Pro MySQL (The Expert's Voice in Open Source) / J. Pipes. - New York:

Apress, 2005. - 768 p.

6. Murphy K. MySQL Administrator's Bible / K. Murphy. - Hoboken: Wiley, 2009. - 888 p.

7. Supercharge Your SQL Queries for Production Databases // https://www.sisense.com/.

Availabte at: https://www.sisense.com/blog/8-ways-fine-tune-sql-queries-production-databases/.

8. Query optimization techniques in SQL Server: tips and tricks //

https://www.sqlshack.com/. Availabte at: https://www.sqlshack.com/query-optimization-

techniques-in-sql-server-tips-and-tricks/.

9. Top 10 SQL Query Optimization Tips to Improve Database Performance //

https://www.mantralabsglobal.com/. Availabte at: https://www.mantrala

bsglobal.com/blog/sql-query-optimization-tips/.

10. SQL Database Performance Tuning for Developers // https://www.toptal.com/.

Availabte at: https://www.toptal.com/sql-server/sql-database-tuning-for-developers/.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 30

http://udidahan.com/2009/12/09/clarified-cqrs/
http://udidahan.com/2009/12/09/clarified-cqrs/

	+Belous_Krуlov_Anikin
	+Bondarenko_Zeniv
	+Diakov_Zubrei
	+Kornaga_Bazaka_Marienko
	+Romanenko_Finogenov_Bondarenko
	+Stenin_Pasko_Soldatova_Stenin
	+SteninMelkumianSoldatovaDrozdovich
	+Бондар_Лісовиченко
	+Голубек
	+Дьяков_Самойдюк
	+Круглова_Диховичний_Лисенко_Богданова (Восстановлен)_1
	+Пархоменко_Сегол_Лісовиченко
	+Степанов_Корнага_Крилов_Анікін
	Binder2.pdf
	Зміст
	УДК
	ПРО АВТОРА

 HistoryItem_V1
 AddNumbers

 Range: From page 1 to page 115; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 70.87 points, vertical 25.51 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20210115114315

 1
 1

 BR

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1216
 231
 0
 1
 R0
 12.0000

 Odd
 1
 SubDoc
 115

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 25.5118

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 0
 115
 114
 5ed48a3b-7b83-42ad-916a-f3d3deaf1e41
 58

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 1 to page 115; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 70.87 points, vertical 25.51 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20210115114344

 1
 1

 BL

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1216
 231
 0
 1
 R0
 12.0000

 Even
 1
 SubDoc
 115

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 25.5118

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 1
 115
 113
 e1c08d3a-6818-42b7-b86a-ada69273a2b6
 57

 1

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 2
 Page size: same as current

 D:20210115114404

 Blanks
 Always
 2
 1

 D:20180918122136
 841.8898
 a4
 Blank
 595.2756

 70
 Tall
 1060
 190
 0
 1
 1

 CurrentAVDoc

 SameAsCur
 BeforeCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 0
 2

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 Page size: same as current

 D:20210118082038

 Blanks
 Always
 1
 1

 D:20180918122136
 841.8898
 a4
 Blank
 595.2756

 70
 Tall
 1060
 190

 0
 1
 1

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 141
 1

 1

 HistoryList_V1
 qi2base

