
UDC 004.657

A. Stepanov, Y. Kornaga, E. Krуlov, V. Anikin

FEATURES OF INDEXING IN DATABASES

AND THE CHOICE OF THE OPTIMAL IMPLEMENTATION

Abstract: Database management systems use indexing to improve performance and

speed up search queries. There are several possible indexing implementations. The problem is

the choice of the optimal implementation depending on certain conditions. To address this

issue a review of the main indexing implementations used in modern database management

systems is provided. The data structures underlying indexes are considered. Examples and

features of using each of the main indexing implementations are given.

Keywords: database management systems (DBMS), databases, indexing, indexes, data

structures.

Introduction

One of the main goals in software engineering is to speed up the operation of

applications, reduce the execution time of applications and requests, and also minimize costs

and used resources. The challenge touched upon in this publication is to speed up database

searches. To solve this problem, database management systems use indexing. This involves

creating and using indexes on values from columns in tables that exist in the database. The

created index is a separate database object and is a table of the values that are supposed to be

searched and pointers to the corresponding values in the table of the database itself [1] (Fig. 1):

Figure 1. Index concept in databases

The index can be formed from the values of one or several columns of the table. In the

second case such an index is called a composite index or multi-column index. Also, indexes

can be unique when they refer to no more than one attribute of a table and non-unique when

they correspond to several attributes at the same time.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

  A. Stepanov, Y. Kornaga, E. Krуlov, V. Anikin

 ISSN 1560-8956 110

The simplest example of using indexes in real life is the table of contents for a book.

So, instead of going through all the pages of the book the reader can open a specific chapter of

the book by getting the number of its starting page from the table of contents. Indexes in

databases serve the same purpose. They allow you to get data from a specific record without

going through all the records in the table.

Problem Statement

The speedup when using indexes is achieved primarily because the index has a

structure optimized for search - a B-tree for example. Also, indexes are used when it is

necessary to perform fast selection, sorting, performing a join of database tables.

If it is necessary to find a friend from a table with a specific name without using

indexes the search will be performed by searching the table completely. The time complexity

of such an algorithm will be O(n) or linear. You can create an index to the friend's name field

in which names are sorted alphabetically. Search for a friend by name in a table with such an

index will be carried out by an algorithm with a time complexity of O(log n) or logarithmic.

This will be a binary search with halving. For example, if you need to find a friend named

Zack the first iteration would be to check for a match in the middle of the friends list in the

index. If there is no match, we discard the first half of the list, since the friends are sorted

alphabetically in the index and we know that the letter “z” will be in the second half. Further,

according to a similar algorithm a search is carried out in the second part and subsequent

parts. Thus, using an index can significantly reduce the search time in the table especially as

the amount of data in it grows.

The downside of using an index is increased memory usage. The index needs to create

and store a separate table in the database. The number of database fields to which indexes are

created also plays a role. Indeed, for each created index to a database field, it will be

necessary to store a separate table, if we are talking about a simple index. This raises the

problem of choosing the optimal number of fields for which you need to create an index.

Typically, these are the fields that are searched for.

Another problem when using an index is the need to rebuild the index every time the

database changes. Indexes cannot be used until they are updated. The developers of some

database management systems declare support for the ability to query the database during

index updates in the future, but this feature is not yet massively available. Thus, the question

arises about the advisability of using and maintaining the operation of indexes in conditions of

high intensity of records in the database.

If the decision to use indexes is made, one of the main problems becomes the problem

of choosing the optimal implementation of the index, depending on the task and conditions.

Possible solutions to this problem will be discussed below.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 111

An overview of existing solutions

B-tree Index

There are several possible database indexing implementations. One of the most

commonly used and also often the default indexes in database management systems is

the B-tree or balanced tree [2, 3] (Fig.2).

Figure 2. B-tree index in databases

B-tree is a data structure that is a balanced tree that stores data in its nodes in sorted

order. Balanced means that the length of any two paths from root node to leaf node differs by

no more than one. The B-tree stores data so that each node contains keys in ascending order.

Each of these keys has links to child nodes. The number of such links for each node in the tree

is determined by the degree of the tree. The higher the degree of the tree the more links to

child nodes and the lower the nesting level of the tree nodes. Databases usually use a tree with

a degree of nesting with root node, branch nodes and leaf nodes.

The B-tree index is not picky about the data of the fields, but it means that the fields

can be compared with each other for a larger, smaller value and equality. B-tree indexing

allows you to search by full key value, by a range of values, by the prefix part of the value, as

well as by the index itself. B-tree indexing does not allow sampling without key prefix [4].

Hash Index

Another type of index used for indexing in databases is Hash index (Fig.3).

Hash indexes are based on the hash table (hash map) data structure. In other words, it

is an associative array storing key-value pairs. Hash indexes are used as entry points for

memory-optimized tables. Reading rows from a table requires an index that locates the data in

memory. The Hash index consists of a collection of containers organized into an array. The

hash function maps the index keys to the corresponding containers in the Hash index. If two

index keys are matched to the same hash container a collision occurs - a hash conflict. A large

number of hash conflicts can negatively impact read operations [5, 6].

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 112

Figure 3. Hash index in databases

R-tree Index

Indexing some data types will not satisfy either the B-tree index or the Hash index.

For example, these types of data include spatial, geographic, cartographic data. The R-tree

index is used to index such data types [7] (Fig. 4).

R-tree index allows you to index values that may overlap with each other. The

construction method of the R-tree index is similar to the B-tree index. The difference lies in

the information written to the intermediate pages in the tree. R-tree index is actively used for

geographic data types [8].

Other Indexes

The above indexes are the most basic, common and frequently used. However, there

are a number of other indexes that are also widely used.

Inverted Index. An index commonly used for full-text searches. It can also be used to

search through arrays and other non-atomic fields consisting of elements (by JSON object for

example). It is a key-value pair where the key is search elements (words, numbers) and the

key are pointers to the table fields where this element occurs [9].

Functional Index. The index in which all keys are derived from the function. For

example, if you have a column of images, and the function is to determine the dominant color,

then you can create an index as a result of this function. Such an index will allow you to quickly

obtain all images with the same dominant color, without performing the function again [10].

Bitmap Index. An index based on the bitmap data structure (bitset, bitmask, bit

array). Allows you to compactly store information about fields about compliance with any

Boolean condition. Thus, the bit index value is a sequence of 0 or 1. Bit index can be used by

the database to combine multiple indexes.

Partial Index. An index that may index not all fields. Used to optimize and reduce

memory usage. For example, it can exclude NULL fields from indexing, thereby reducing the

size of the index itself.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 113

Figure 4. R-tree index in databases

Covering Index. An index with enough data to stop accessing the table. Allows

increasing the speed of query execution. The index can be configured to cover more fields.

However, this should not be overused as the index itself becomes larger.

Clustered Index. It is used to optimize the execution of queries by ordering the data of

the table itself. By default, the data in the table is not ordered in any way. Using a clustered index

implies ordering the table data in the same order as in the index. This helps to reduce the

execution time of queries using this index. There can be only one clustered index in a table [11].

There are also other indexes that are not as widespread or used as often. It can also be a

variety of the above-described indexes, or indexes unique to a specific database. Among these:

- GiST index, Spatial index – indexes most often based on the R-tree data structure;

- GIN index, Text index – similar to Inverted index;

- Function-Based index – similar to Functional index;

- Reverse index – index designed to eliminate index hot spots on insert application;

- Unique index – index that helps maintain data integrity by ensuring that no two

rows of data in a table have identical key values;

- Bidirectional index – index that allows scans in both the forward and reverse

directions;

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 114

- Expression-based index – index that can includes expressions;

- BRIN (Block Range Index) – index designed for handling very large tables in which

certain columns have some natural correlation with their physical location within the table

[12, 13, 14].

Choosing the optimal index

In certain tasks, under certain conditions it is advisable to use a certain index. Also,

indexes can be combined. For the optimal choice of an index one should take into account the

advantages, disadvantages and peculiarities of using each of them. To do this let's make a

comparative characteristic of the basic indexes:

Table 1

Comparative characteristic of the basic indexes

Index Features Advantages Disadvantages

B-tree

The most common

type of index. Default

index in many

databases

Stores data sorted.

Undemanding to the fields

themselves. Efficient at

processing inequality queries

Not as fast as Hash indexes for

equality queries. Requires a

relatively large amount of space

Hash

Index that implements

the hash table data

structure

Very efficient at equality

lookups. The lookups take

constant time which is

independent of the number
of rows in table

Not efficient at inequality

queries. Require more space

than range indexes. Possible

collisions will slow down

requests

R-tree
Used for geographic

and spatial data

The ability to search for arbitrary

points and regions

Redundancy in data storage.

Because of this - slow data

refresh

Inverted
Used for full text

search

Best option for full-text search

and other complex fields

Inserting and updating data is

relatively slow

Functional
Index from function

by field

Uses a B-tree structure, with the

ensuing benefits

Increased the request time
 each time you insert

and update a field

Bitmap

An index based on

bitmap as data

structure

Allows to store data about

Boolean fields of the table using

a relatively small amount

Inability to change the encoding

method when updating the table

Partial
Used to reduce

memory usage

Reduces memory usage by not

indexing NULL fields

Time spent on index creation,

complexity of index creation

Covering
Used to optimize

query execution

Stores query data and allows you

to refuse to access the table

Increases the amount of used

memory while trying to cover a

large number of fields

Clustered
Used to order
the table itself

Allows you to reduce the

execution time of a query by

aligning the index and table

Usually, it is performed once

and requires repeated calls later

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 115

Conclusion

The indexing process in database management systems is the creation of indexes -

individual entities, tables in the database. Indexes are created to existing database tables and

are used to speed up searching, sorting, and comparing information stored in the database.

Effective use of indexes can significantly speed up database query processing. However,

indexes take up additional space in the database and also slow down the database when

inserting and updating information. Consider this before using indexes.

Once the decision on the advisability of using indexes is made, the main problem

becomes the choice of the optimal implementation of the index. There can be several indexes

and they can be combined. One or another index is effective depending on the tasks and

conditions. To successfully include indexes in the database, you need to consider the specifics

of using each of them.

REFERENCES

1. Indexing [Electronic resource] // The Data School by Chartio. – 2020. – URL:

https://dataschool.com/sql-optimization/how-indexing-works.

2. Redmond E. Seven Databases in Seven Weeks, Second Edition / E. Redmond, J.

Wilson. – Dallas, Texas; Raleigh, North Carolina U.S.: The Pragmatic Bookshelf, 2018.

3. Lehman P. Efficient locking for concurrent operations on B-trees / P. Lehman, S.

Yao. // ACM Transactions on Database Systems. – 1981. – Pages 650–670.

4. Graefe G. Modern B-Tree Techniques / G. Graefe, H. Kuno. // IEEE 27th

International Conference on Data Engineering. – 2011. – Pages 1370–1373.

5. Hash Indexes [Electronic resource] // Microsoft SQL Server 2014 documentation. –

URL: https://docs.microsoft.com/en-us/previous-versions/sql/2014/database-engine/hash-indexes.

6. Index Table pattern [Electronic resource] // Azure Product documentation. –

2017. – URL: https://docs.microsoft.com/en-us/azure/architecture/patterns/index-table.

7. IBM Informix R-Tree Index User's Guide [Electronic resource] // IBM Informix Server

V11.50 documentation. – URL: https://www.ibm.com/support/knowledgecenter/en/SSGU8G_

11.50.0/com.ibm.rtree.doc/sii-overview-27706.htm.

8. Böhm C. Searching in high-dimensional spaces: Index structures for improving

the performance of multimedia databases / C. Böhm, S. Berchtold, D. Keim. // ACM

Computing Surveys. – 2001. – Pages 322–373.

9. Black P. Inverted index [Electronic resource] / Paul E. Black // Dictionary of

Algorithms and Data Structures. – 2017. – URL: https://www.nist.gov/dads/HTML/

invertedIndex.html.

10. Functional Indexes [Electronic resource] // IBM Informix Server V12.1 documentation. –

URL: https://www.ibm.com/support/knowledgecenter/en /SSGU8G_12.1.0/com.ibm.adref.doc/ids_

adr_0325.htm.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 116

https://www.ibm.com/support/knowledgecenter/en/SSGU8G_
https://www.ibm.com/support/knowledgecenter/en%20/SSGU8G_12.1.0/com.ibm.adref

11. Clustered and Nonclustered Indexes Described [Electronic resource] // Microsoft

SQL Server 2019 documentation. – 2019. – URL: https://docs.microsoft.com/en-

us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-

server-ver15.

12. Types of indexes [Electronic resource] // IBM Db2 Warehouse documentation. –

URL: https://www.ibm.com/support/knowledgecenter/SSCJDQ/com.ibm.swg.im.dashdb.kc.doc/

welcome.html.

13. Using a Different Index Type [Electronic resource] // Oracle Database

Performance Tuning Guide. – URL: https://docs.oracle.com/en/database/oracle/oracle-

database/19/tgdba/designing-and-developing-for-performance.html#GUID-38FC5A9F-89E6-

4812-8EE4-F9949B69BCFC.

14. BRIN Indexes [Electronic resource] // PostgreSQL 9.5.22 Documentation. –

URL: https://www.postgresql.org/docs/9.5/brin-intro.html.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 117

https://www.ibm.com/support/knowledgecenter/SSCJDQ/com.ibm.swg.im.dashdb.kc.doc/

	+Belous_Krуlov_Anikin
	+Bondarenko_Zeniv
	+Diakov_Zubrei
	+Kornaga_Bazaka_Marienko
	+Romanenko_Finogenov_Bondarenko
	+Stenin_Pasko_Soldatova_Stenin
	+SteninMelkumianSoldatovaDrozdovich
	+Бондар_Лісовиченко
	+Голубек
	+Дьяков_Самойдюк
	+Круглова_Диховичний_Лисенко_Богданова (Восстановлен)_1
	+Пархоменко_Сегол_Лісовиченко
	+Степанов_Корнага_Крилов_Анікін
	Binder2.pdf
	Зміст
	УДК
	ПРО АВТОРА

 HistoryItem_V1
 AddNumbers

 Range: From page 1 to page 115; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 70.87 points, vertical 25.51 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20210115114315

 1
 1

 BR

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1216
 231
 0
 1
 R0
 12.0000

 Odd
 1
 SubDoc
 115

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 25.5118

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 0
 115
 114
 5ed48a3b-7b83-42ad-916a-f3d3deaf1e41
 58

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 1 to page 115; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 70.87 points, vertical 25.51 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20210115114344

 1
 1

 BL

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1216
 231
 0
 1
 R0
 12.0000

 Even
 1
 SubDoc
 115

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 25.5118

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 1
 115
 113
 e1c08d3a-6818-42b7-b86a-ada69273a2b6
 57

 1

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 2
 Page size: same as current

 D:20210115114404

 Blanks
 Always
 2
 1

 D:20180918122136
 841.8898
 a4
 Blank
 595.2756

 70
 Tall
 1060
 190
 0
 1
 1

 CurrentAVDoc

 SameAsCur
 BeforeCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 0
 2

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 Page size: same as current

 D:20210118082038

 Blanks
 Always
 1
 1

 D:20180918122136
 841.8898
 a4
 Blank
 595.2756

 70
 Tall
 1060
 190

 0
 1
 1

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 141
 1

 1

 HistoryList_V1
 qi2base

