
UDC 004.65
V. Nikitin, E. Krуlov, Y. Kornaga, V. Anikin

COMBINED INDEXING METHOD IN NOSQL DATABASES

Abstract: Any system must process requests quickly. This is one of the main
conditions for a successful system. Higher data processing rates come along with new
technologies. An example is 5G technology, which allows data to be exchanged at speed of
up to 100 Mbps for downloads and up to 50 Mbps for uploads. The operation of the database
depends on many factors, including the characteristics of the server, the number of requests to
the server and the requests themselves. Improperly worded queries can degrade the speed of
the system in general. The situation can be corrected by indexing, which allows you to
increase the speed of searching for information in the database itself.

Keywords: database, SQL, NoSQL, index, binary tree, hashing

Formulation of the problem
Any information system cannot be without a database. This automatically

becomes one of the potential problem areas. Performance declines when queries are
misused, active connections are exceeded, or too many data is used. If the system has a
small number of users, it is possible to clean the database and / or optimize
abstractions. If the system targets a large amount of data, it will not help. There are
special objects called indexes to solve the problem of data retrieval. The process of
creating an index is called indexing [1].

Currently, NoSQL databases are very common, so the ability to speed up the
search for information remains relevant. Databases such as CoachDB and MongoDB
have the ability to index documents. Without indexing, the listed databases must scan
each document and select the ones that match the query. This process is very
inefficient and requires a lot of data processing [2].

An overview of existing solutions

It is common in NoSQL databases that existing indexing methods are binary
trees and hashing.

B-trees are balanced trees in which the time of standard operations is
proportional to the height. The main difference is that they have been created
specifically to work with disk memory. The structure aims to reduce the number of
input and output operations. When constructing a B-tree, the factor t is used, which is
called the minimum degree. There is a limitation on this indicator, which is that each
node must have more than t - 1 and less than 2 ∙ t - 1 keys [3].



 Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (38) 2021

 ISSN 1560-8956 3
V. Nikitin, E. Krуlov, Y. Kornaga, V. Anikin

The keys are stored in ascending order in each node, but more important
property is the number of keys in the node which affects the range of descendant keys.
Suppose that the set of node keys is k[i], where t is 1 < I < 2 ∙ t - 1, and the set of
descendants is c[i]. Then for any key in the subtree with the root c[i] the following
inequality holds:

 (1)

Another condition of the B-tree is the location of all the leaves on the same
level, which is the height of the tree. It follows an important statement that the height
of a tree with and a minimum degree does not exceed .

Searching in the B-tree is similar to searching in the binary tree, but the choice
is possible not only from two options, but few more. The algorithm is as follows:

 We pass on keys of a root node while value is less / more than necessary;
 We pass to the descendant which is to the left / right;
 We go on the keys of the current node;
 If we find the necessary element, we stop. Otherwise, repeat the algorithm.
The complexity of the algorithm is , where t is the minimum

degree. But it is worth noting that the number of disk operations is .
Adding elements to a B-tree is more difficult because of the possible violation

of properties. If the sheet node is not filled, the insert is simple. Otherwise, the sheet
node is divided into two, each of them contains t - 1 key. The middle element moves to
the upper node. If the upper node is also full, then the same operations are performed
for it. The complexity of the algorithm is also , and the number of disk
operations , where h is the height of the tree.

Deleting an element in a B-tree is more difficult than adding elements. This is
because each removal requires rebuilding the tree as a whole. The algorithm of the
process of removing the key from the sheet node is as follows:

 If the node has more keys than after removal, then everything is fine.
Just delete the item and that’s all;

 Otherwise, take a separate element in the upper node, and insert it into the
node where the element is removed.

 The element from the second descendant passes to the upper node and
becomes a separator.

If the element is removed from the upper node, the algorithm is as follows:
 Delete the item;

 Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (38) 2021

 ISSN 1560-8956 4

 Take the first element from the right node of the descendant, for which the
deleted element is a separator.

The complexity of the algorithm is also , and the number of disk
operations , where h is the height of the tree.

The main disadvantage of B-trees is the lack of effective means of data sampling
(i.e. the method of traversing the tree), arranged differently from the selected key.

Database hashing is used as a way to directly find data on disk without using a
typical index structure. It is used to index and retrieve data from a database by a short
hash value, because it is faster than searching by value. The data is stored in the form
of blocks, the addresses of which are generated using a hash function. The address of
the data block is used as an argument.

The hashing method is used in the following cases:
 The hashing method is used to index and retrieve items in the database

because it is faster to search for that particular item using a shorter hashed
key instead of using its original value;

 Hashing is an ideal method for calculating the direct location of data written
to disk without using an index structure.

There are two types of hashing methods:
 In static hashing, the resulting address of the data segment remains

unchanged. This means that using the same argument for the hash function,
we will get the same address. Therefore, the number of segments in memory
always remains constant [4].
When we need to insert a new record, we can create an address using its
hash key. When the address is generated, the record is automatically saved
in that location.
When reading information, the hash function is useful for obtaining the
address of the segment where the data should be stored.
In its turn, static hashing is divided into open and closed.
 Open hashing does not overwrite old information, but uses the

following block for data. This method is also called linear sounding.
 In the closed hashing method, when segments are filled, a new segment is

allocated for the same hash, and the result is bound to the previous one.
 Dynamic hashing offers a mechanism by which data segments are added and

removed dynamically and on demand. In this hashing, the hash function
helps to create a large number of values [4].

 Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (38) 2021

 ISSN 1560-8956 5

The disadvantage of hashing is collisions. A collision is a condition in which
the resulting hashes of two or more data in a set incorrectly represent the same place in
the hash table [5].

A T-tree is a balanced index tree data structure optimized for when both index
and actual data are fully stored in memory, just as a B-tree is an index structure
optimized for storage on block-oriented secondary storage devices such as hard drives.
T-trees seek to benefit from the performance of wood structures in memory, such as
AVL trees, while avoiding the large loads they share.

T-trees do not store copies of indexed data fields in the nodes of the index tree.
Instead, they take advantage of the fact that the actual data is always in main memory
along with the index, so they simply contain pointers to the actual data fields. "T" in
the T-tree refers to the shape of the node data structures in the original work, which
first has described this type of index [6].

Figure 1. T-tree nodes distribution

A T-node typically consists of pointers to the top node, a left and right child
node, an ordered array of data pointers, and some additional control data. For each
internal node, there are nodes of the leaf or half of the leaf that contain the predecessor
of the smallest data value (called the largest lower bound) and the one that contains the
successor of its largest data value. Nodes can contain any number of data elements
from one to the maximum size of the data array. Internal nodes keep busy between a
predetermined minimum and maximum number of elements.

The main disadvantage is the amount of memory required. The cost of memory
to store even a single index that includes actual values can exceed dozens or even
hundreds of terabytes.

The O2 tree is basically a red-black binary search tree in which leaf nodes are
formed into index blocks or fragments that store recordings of "key-value, record pointer"
pairs. Internal nodes contain copies of only the key-value values of the middle pairs "key-
value, record-pointer", which separate the blocks of sheet nodes when they are filled.

 Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (38) 2021

 ISSN 1560-8956 6

These internal nodes are formed into a simple binary search tree, which is balanced using
Red-Ebony rotation algorithms. The binary mahogany algorithm is less complex than the
AVL tree algorithm, which has more stringent balancing conditions [7].

The O2 tree is associated with the order of the tree denoted by m. The order is the
maximum number of "key-value, write pointer" pairs that a sheet node can contain. Data
is stored in sheet nodes; internal nodes are simply binary space holders that facilitate or
direct the bypass of the tree to the leaf node. All successful or unsuccessful searches
always end at the leaf node. This is similar to the B+-Tree search process, except that
internal nodes now contain only individual key values as opposed to m key values.

Searching for an O2 tree is similar to searching for a red-and-black binary tree.
However, the internal red-black tree structure serves as space holders to find the actual
key in the leaf node. Unlike T-Tree and B + -Tree, the search is performed with only
one key comparison in the internal node. T-Tree and B+ -Tree perform an average
of comparisons before continuing the search.

The task of the Top-Down algorithm is to ensure that when a new internal node
is inserted, there is no need to move up the tree again. In this way, it ensures that when
a new internal node is inserted, its parent element will not be red.

The expected use of the drive, due to the fact that it increases and decreases
according to the splitting and merging of the blocks, is . The memory usage
indicated is the total number of stored keys divided by the total capacity of all nodes.

The O2 tree has the disadvantage that it does not have asynchronous permanent
storage.

Conclusion

Thus, indexing is a popular tool to speed up data retrieval. It is available in both
relational and non-relational databases. In both cases, similar algorithms are used. The
most popular indexing methods are B-Tree, T-Tree, O2-Tree and hashing. Each of
these methods has significant disadvantages. The main disadvantage is the excessive
consumption of memory allocated for the index. To solve this problem, it is possible to
combine tree structure and hashing to obtain the most optimal and reliable structure.

This data structure is extended hashing. The basic idea is that the hash table is
represented as a directory, and each cell will point to a container with a certain
capacity. The hash table itself will have a global depth, and each of the capacities has a
local depth. The global depth shows how many last bits will be used to determine the
capacity in which you want to store the value. From the difference between the local

 Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (38) 2021

 ISSN 1560-8956 7

and global depth, you can understand how many cells refer to the capacity [8]. This
can be calculated using the formula:

 (2)

where G – global depth, L – local depth, K – cell amount which has references.
The algorithm itself:

1) Convert the value to binary. Based on the last G bits, we decide in which
capacity to send the value;

2) If the container has a free space, then add this value. We look at the local depth
in the opposite case.

3) If the local depth is less than the global depth, then there is an overlap with
division into two parts. The value of the local depth is increased by one and the
values are entered;

4) If the local depth is equal to the global one, then we increase the global depth by
1, doubling the number of cells, the number of pointers on the tank, and increase
the number of last bits by which we distribute the value. Then the local depth of
the overflowed tank becomes smaller and we repeat the previous algorithm, that
is, we mix the capacity, dividing it into two containers, and so on.
Having implemented B-tree data structures and extended hashing using the

Java programming language, the following results were obtained in table.1 and table.2.

Table 1. Processing time of search and insert operations in the B-tree

Data amount,
pieces/operation

Insertion, s Searching, s

300 000 3 1
500 000 3 2

1 000 000 5 6
1 200 000 15 7

Randomly generated rows were used as test data and entered into the instances of
the structures. Also, it should be noted that the study was conducted using only RAM. In
the future it is planned to apply the algorithm for hard media and make comparisons.

Using a combined indexing method can significantly speed up the insertion and
search operations. For 1 million test values, we see that the insert operation is 66.67%
more efficient when using extended hashing, and 500% more efficient when searching.
With 1 million and 200 thousand test data, we see a significant difference. The insert
operation is 275% more efficient when using extended hashing, and 600% more
efficient when searching.

 Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (38) 2021

 ISSN 1560-8956 8

Table 2. Processing time of search and insert
operations in the structure of extendible hashing

Data amount, pieces
/operation Insertion, s Searching, s

300 000 0 0
500 000 1 0

1 000 000 3 1
1 200 000 4 1

REFERENCES

1. Корнага Я. І. Методи моніторингу подій та обробки запитів в гетерогенних
канд техн. розподілених базах даних на основі векторно-матричних операцій : дис.

наук: 05.13.06 / Держ. ун-т телекомунікацій. - Київ, 2015.
2. Redmond E. Seven Databases in Seven Weeks, 2nd Edition – 358 p., Pragmatic

Bookshelf, April, 2018. ISBN-13: 9781680502534.
3. Grd P., Baca M.. Analysis of B-tree data structure and its usage in computer

forensics. URL: https://www.researchgate.net/publication/210381551_Analysis_of_B-
tree_data_structure_and_its_usage_in_computer_forensics.

4. Sumit Thakur. Hashing Algorithm And Its Techniques In DBMS.
URL: https://whatisdbms.com/hashing-algorithm-and-its-techniques-in-dbms/.

5. MongoDB: Hashed Indexes. URL: https://docs.mongodb.com/manual/core/index-
hashed/.

6. Hongjun Lu, Yuet Yeung Ng, Zengping Tia. T-Tree or B-Tree: Main Memory
Database Index Structure Revisited // 2000 IEEE Proceedings 11th Australasian Database
Conference. ADC 2000 (Cat. No.PR00528). – IEEE, 2000.

7. Ohene-Kwofie D., J.Otoo E., Nimako G.. O2-Tree: A Fast Memory Resident Index
for In-Memory Databases // 2012 IACSIT International Conference on Information and
Knowledge Management (ICIKM 2012). - IACSIT, 2012.

8. Robert Sedgewick. Algorithms in Java, Third Edition, Parts 1-4: Fundamentals,
Data Structures, Sorting, Searching: 3rd Edition – 768 p., Addison-Wesley, 23 July, 2003.
ISBN-13 : 9780201361209.

 Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (38) 2021

 ISSN 1560-8956 9

	1 Nikitin-Krуlov-Kornaga-Anikin
	2 Yakovlev
	3 ИПП англ. 06.05.2021
	4 Колесник_Ролік
	5 Круглова
	6 Мальченко
	7 Михайленко
	8 Рубель Ліхоузова
	9 Сягровський_Мелкумян
	10 Федоряка
	11 Balamut-Anikin-Krуlov
	12 My_ACAУ_Boiko_new
	13 ЗМІСТ
	14 УДК
	15 Про автора

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 2
 Page size: same as current

 D:20210517153528

 Blanks
 Always
 2
 1

 D:20180918122136
 841.8898
 a4
 Blank
 595.2756

 70
 Tall
 1060
 190
 0
 1
 1

 CurrentAVDoc

 SameAsCur
 BeforeCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 0
 2

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 1 to page 114; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 72.28 points, vertical 29.76 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20210517155146

 1
 1

 BR

 1
 1
 1
 0
 0
 1
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1183
 254
 0
 1
 R0
 12.0000

 Odd
 1
 SubDoc
 114

 CurrentAVDoc

 Default
 [Doc:FileName]
 72.2835
 29.7638

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 2
 114
 112
 71ea6df2-d8d2-4ccc-9adb-5b8405cea150
 57

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 1 to page 114; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 72.28 points, vertical 29.76 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20210517155157

 1
 1

 BL

 1
 1
 1
 0
 0
 1
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1183
 254
 0
 1
 R0
 12.0000

 Even
 1
 SubDoc
 114

 CurrentAVDoc

 Default
 [Doc:FileName]
 72.2835
 29.7638

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 3
 114
 113
 ea92e687-44e0-43dd-954e-11c1fc6ec443
 57

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 109 to page 111; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 72.28 points, vertical 29.76 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20210519121935

 1
 1

 BR

 1
 1
 1
 0
 0
 111
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 146
 258
 0
 1
 R0
 12.0000

 Odd
 109
 SubDoc
 111

 CurrentAVDoc

 Default
 [Doc:FileName]
 72.2835
 29.7638

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 108
 111
 110
 5d1a24f6-419b-482a-9cdc-3614f7b9de64
 2

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 109 to page 111; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 72.28 points, vertical 29.76 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20210519121946

 1
 1

 BL

 1
 1
 1
 0
 0
 111
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 146
 258

 0
 1
 R0
 12.0000

 Even
 109
 SubDoc
 111

 CurrentAVDoc

 Default
 [Doc:FileName]
 72.2835
 29.7638

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 109
 111
 109
 6023ff08-7f02-4541-8c28-d698c25d3bc9
 1

 1

 HistoryList_V1
 qi2base

