
Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

UDC 004.273

O. Bondar, O. Lisovychenko

DATA ANALYSIS USING MICROSERVICES

TO SOLVE FORECASTING PROBLEM

Abstract: This article considers the solution to the problem of increasing the efficiency

and reliability of data analysis systems with the involvement of microservices to solve fore-

casting problems. The article analyzes the problem of forecasting data, for what purposes it is

used, what are the methods and approaches to solve this problem. No less special attention is

paid to the description of microservice architecture, the advantages and disadvantages of mi-

croservices in comparison with a monolithic architecture, the general structure of the data

analysis system using microservices, methods to increase the reliability and efficiency of such

systems, the existing data analysis systems based on microservices.

Keywords: data analysis, neural network, microservices, microservice approach, sys-

tem architecture, forecasting.

Introduction

 Data forecasting is an integral part of various areas of human activity, such as science,

economics, and manufacturing.

To date, there are a large number of methods used for forecasting. Among them are

the group method of data handling (GMDH), regression analysis, neural network models, and

others. It is known that solving forecasting problems requires a thorough study and analysis of

the input data that will be used to create models.

 Due to the rapid development of information technology, there has been a sharp increase

in the amount of data, so for their analysis are created automated systems that significantly ac-

celerate this process. However, such systems are quite cumbersome and inoperable, as they re-

quire increased resources (vertical scaling) for stable operation, which are exhaustible.

 Therefore, in recent years to build data automation systems began to use microservice

architecture. This architecture involves the division of the system into independent services –

microservices. This approach allows you to have several services that perform their tasks,

allow you to use different technologies and data warehouses written in different programming

languages. Data transfer between services takes place using the HTTP protocol, notifications,

or event-driven. All services can be deployed and managed using special systems.

Formulation of the problem

 It is necessary to consider the problem of forecasting, to consider microservice archi-

tecture: to make a comparative description of monolithic and microservice architectures, to

find advantages and disadvantages of microservices, to analyze existing systems built on the

basis of microservices.

 O. Bondar, O. Lisovychenko

 ISSN 1560-8956 65

 Also, it is necessary to offer methods and technologies to increase the efficiency and

reliability of data analysis systems to solve forecasting problems using neural network models

with the involvement of microservice technologies.

Solving the problem

 Data forecasting is one of the types of Data Mining tasks. As a result of solving fore-

casting problems, the risk of making wrong decisions is reduced, the efficiency of manage-

ment of various spheres of human activity is increased. Neural network models, regression

analysis, or GMDH are commonly used to predict data.

 Regression analysis is a method of determining the separate and joint influence of fac-

tors on the performance trait and quantifying this influence by using appropriate criteria. Re-

gression analysis is performed on the basis of the constructed regression equation and deter-

mines the contribution of each independent variable to the variation of the studied (predicted)

dependent variable. The main task of regression analysis is to determine the influence of fac-

tors on the performance indicator (in absolute terms) [1].

 GMDH is a method used for in-depth learning, forecasting, optimization, and pattern

recognition. GMDH inductive methods make it possible to automatically find relationships in

the data, select the optimal model or network structure, and increase the accuracy of existing

algorithms. This method contains a set of several algorithms for solving various problems. It

consists of parametric algorithms, clustering, probabilistic algorithms, etc [2].

 A neural network is a model that can use not only the algorithms chosen for it, but also

has the opportunity to learn with new data. Data prediction using neural networks has recently

become quite popular and widespread. This popularity is caused, first of all, by the high accu-

racy of this technology, and the neural network allows you to predict any type of data. Thus,

the further description of the solution of forecasting problems will include the use of neural

networks [3].

 Solving forecasting problems involving neural networks is divided into the following

stages: 1. creation or preparation (analysis) of data; 2. choice of network topology; 3. network

training; 4. The work of the model – data forecasting.

It should be noted that data analysis is one of the main stages, the purpose of which is

to find the relationship between the data and remove incorrect data from the set. This stage is

used in all methods to solve forecasting problems. The correctness of the results of this stage

depends on the correctness of the forecasting in general.

Data analysis using microservices

 In order to automate the process of data analysis, appropriate systems are created.

Such systems perform analysis, automate the choice of neural network topology, to create a

final model for solving the problem of data prediction. However, the existing automated data

analysis systems, unfortunately, are not viable and stable, with a significant increase in data

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

66

volumes, as they are built on a monolithic architecture. Based on this, have recently begun to

implement microservice architecture not only in enterprises and businesses but also in the

field of data analysis.

 Microservice architecture is one of the types of system architecture, which consists in

dividing the system into separate independent parts (microservices) that perform different

tasks and communicate with each other usually using the HTTP protocol [4].

 To prove the efficiency and reliability of microservices, a comparative characteristic

of monolithic and microservice architectures is given (Table 1).

Table 1

Comparative characteristics of monolithic and microservice architectures

Monolithic architecture Microservice architecture

Language

programming

Uses one programming

language entirely

Every service can be

written in different languages

Scaling
Scaling is difficult because it is required

scale the whole system

Scaling is simple,

it is possible to scale each service separately

Support

Hard to support for

cumbersome account

systems

Easy enough to maintain

Introduction

new

functional

Heavy and slow

introduction of a new one functional

Easy and fast introduction

new functionality

Deployment

systems

Slow deployment for

large code base account

It is possible to deploy only

certain services from all over

systems

Data model One data model for the whole system Each service can contain its own data model

Occurrence

errors in

codebase

Errors fail operation of the entire system
An error in one of the services will not affect

the operation of other system functionality

 Also, a study was conducted on the productivity of solving problems of microservice

architecture and monolithic. The results are shown in fig. 1 – comparative graph of system

performance.

Figure 1. Comparative graph of productivity

of monolithic and microservice architectures

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

67

 Obviously, the microservice architecture has many advantages, however, despite this,

there are also disadvantages in this approach to systems architecture:

 complexity during system deployment, as it requires additional settings for each ser-

vice;

 there is a possibility of network delays;

 it is more difficult to ensure fault tolerance and balancing of the system.

The above shortcomings are significant, but with the correct design of the microser-

vice architecture, the occurrence of such shortcomings is quite small. Accordingly, to address

these shortcomings, there are some approaches:

 services should be light enough and at the same time perform their main tasks;

 to avoid the complexity of the deployment, you need to use systems for orchestration

of services (OpenShift, Kubernetes);

 all services must be able to scale;

 when building microservices it is necessary to take into account service delays or their

failure.

In the general case, the microservice architecture for data analysis systems can be

represented as follows (Fig. 2).

Figure 2. General view of microservice architecture for data analysis systems

Interaction with the system takes place using a special service – API Gateway, which,

depending on the request to the system redirects this request to the appropriate service. To use

the system, you need to enter it by authorization. The Security manager service is responsible

for the authentication and authorization work in the system, and the User management service is

responsible for creating a new user or changing an existing one. Upload data service – a service

used to upload and convert data to the system. After downloading the data, this data is

processed and analyzed using the appropriate service – Analysis data. The results of the Analy-

sis data service can be used by the service to perform the forecasting – Forecasting service.

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

68

Based on the presented scheme, the question of the stability of this system may arise.

The system is accessible to more than one user, so when a large amount of data is downloaded,

especially when further analysis of this data and forecasting, the system may crash or slow

down. In monolithic architecture, this problem is tried to solve by parallelizing the tasks of data

analysis and forecasting. However, this approach works well when using large capacities.

For fault tolerance of the service/services in the microservice architecture of the analy-

sis system, it is necessary to add an additional service called Load Balancer. Its main task is to

distribute the load on the instances of the same service (Fig. 3). Using Load Balancer allows

you to reduce the load on services that analyze and forecast data: Analysis data service and

Forecasting service.

Figure 3. Example of microservice architecture

using load balancing service – Load Balancer

 Building a system using microservices will allow you to use different technologies to

solve problems. Therefore, Python forecasting language and auxiliary libraries are best suited

to create analysis and forecasting services today: Keras, Pandas, and others. Java with the

Spring framework is best for creating data download, user, and security services. Because the

data being downloaded may have a different format, it is best to store this data in a NoSQL

database, in other tasks – regular SQL databases.

 Also, microservices make it possible to easily and quickly introduce additional func-

tionality, which demonstrates the flexibility of such an architecture. For example, it is possi-

ble to integrate work with the product Jupyter Lab, which will allow you to analyze the fore-

cast data, the ability to create scripts for additional functionality, etc.

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

69

Existing systems for data analysis using microservices

 To date, there are few systems for analyzing data based on microservices. An example

of one such system is the Qunxian platform. This platform is designed for large data

processing and further forecasting. With it, it is possible to use the total computing power of

the server. The microservice approach in building the Qunxian platform allows you to easily

and quickly add third-party systems to automate data analysis tasks, there is the possibility of

parallel computing using Apache Spark. JupyterHub and a visual modeling system are used as

the two main microservices. Qunxian is deployed using Docker technology.

 The general microservice architecture of the Qunxian platform is shown in fig. 4.

Figure 4. General microservice architecture of the Qunxian platform

 This platform consists of four levels: 1. Hardware; 2. Resource management; 3. Data;

4. Platforms. The hardware layer uses Google Cloud Engine cloud computing technology,

which allows you to easily scale the system, make it more flexible, have better and more se-

cure data storage. Docker technology is used to deploy platform components on the cloud

service. The level of resource management is built using Docker Swarm technology, which

allows the orchestration of Docker containers. At the data level, HDFS (Hadoop Distributed

File System), a technology for storing files on various data servers, and Greenplum, a parallel

PostgreSQL-based database for working with large data sets, are being deployed. HDFS and

Greenplum work with Spark, a framework for working with unstructured analytics. The plat-

form layer represents two parts of the system – server and client. The server part contains Ju-

pyterHub technology, which allows you to do calculations and consists of two applications:

for online programming and visual modeling. All work with the system takes place through

the client part, using a graphical interface [5-8].

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

70

 Let's analyze the test operation of the platform at different loads. The results are

shown in fig. 5.

Figure 5. Test the operation of the Qunxian platform under load

 Analysis of the result confirms that the requests sent to the platform were completed

successfully and fairly quickly, quantitative indicators provide an opportunity to show the

reliability and speed of the system built on the basis of microservices.

 Another example of the use of microservices is the system described in the article [9].

This system solves the problem of self-adaptation of cloud and virtual infrastructure through

forecasting. The authors consider the microservice architecture of the system, which, depend-

ing on the number of requests and the corresponding load, requires specialists to manually

scale, which is desirable to do in advance so as not to stop the services. However, manual

scaling is not advisable, because, with a large load on different services, it is impossible for

professionals to track all the moments when it is worth scaling services. Based on this, as well

as taking into account the use of microservices in the system, the authors decided to create an

additional service for forecasting. The architecture of the described service is shown in fig. 6.

 The user interface of the service allows you to easily adjust various parameters, in-

cluding timestamps, and also allows you to download and perform predictions with your own

data or check the service using the provided sample data. Data loading is achieved using the

Data Volume component. Scripts in the R programming language using user parameters are

used to run forecasting scripts. The predicted results are stored using the InfluxDB database,

and the time interval estimate and other data are saved by the MongoDB database.

 It is obvious that the use of microservice architecture for the system described in the

article [9], allowed not only to create the above additional service for forecasting, but also to

leave and not change the existing functionality, which in turn proves the flexibility of micro-

services.

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

71

Figure 6. Forecasting service architecture for cloud

and virtual infrastructures self-adaptation

Conclusions

 Existing data analysis systems for forecasting problems are rather slow and unreliable,

especially with a large amount of information.

 The article considers the stages of creating models for solving forecasting problems

using neural network models and involving microservices in the construction of data analysis

systems. The comparative characteristic of monolithic and microservice architectures is given.

The advantages and disadvantages of microservices are analyzed and presented. The use of

certain methods and technologies in the construction of fault-tolerant microservice architec-

ture is demonstrated. The existing systems of automation of data analysis tasks, which are

built on the basis of microservices, are analyzed.

 It is proved that the proposed methods and technologies for building data analysis sys-

tems using models of neural networks with the involvement of microservices will increase the

reliability and efficiency of the developed systems.

REFERENCES

1. Regression analysis URL: https://pidru4niki.com/17280924/ekonomika/regresiyniy_

analiz (date of use: 03.10.2021)

2. GNDH URL: http://www.gmdh.net/ (date of use: 03.10.2021)

3. Bondar O. / Review and analysis one of the approaches to training the neural net-

work model / O. Bondar, O. Lisovychenko // Interdepartmental scientific technical journal

«Adaptive systems of automatic control». 2021. № 2 (37). С.

4. Fowler M., Lewis J. Microservices URL: http://martinfowler.com/articles/

microservices.html (date of use: 24.09.2021)

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

72

https://pidru4niki.com/17280924/ekonomika/regresiyniy_
http://martinfowler.com/articles/

5. HDFS Architecture Guide URL: https://hadoop.apache.org/docs/r1.2.1/

hdfs_design.html#Introduction (date of use: 25.09.2021)

6. Greenplum Database URL: https://greenplum.org/ (date of use: 25.09.2021)

7. Apache Spark URL: https://spark.apache.org/ (date of use: 25.09.2021)

8. A Microservice-Based Big Data Analysis Platform for Online Educational Applica-

tions URL: https://www.hindawi.com/journals/sp/2020/6929750/ (date of use: 25.09.2021)

9. Forecasting Models for Self-Adaptive Cloud Applications: A Comparative Study URL:

https://www.researchgate.net/publication/327545263_Forecasting_Models_for_Self-Adaptive_

Cloud_Applications_A_Comparative_Study (date of use: 25.09.2021)

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

73

https://hadoop.apache.org/docs/r1.2.1/
https://www.researchgate.net/publication/327545263_Forecasting_Models_for_Self-Adaptive_

	+Belous, Krуlov, Anikin 2021
	+EN Стаття Тимошина та Южди
	+IoT_EN
	+Linevych
	+Serverless_EN
	+V. Nikitin, E. Krуlov, Y. Kornaga, V. Anikin edited
	+Yevhenii Vovk
	+Лихоузова
	+Лісовиченко
	+Писаренко Головатенко_
	+Писаренко Кульбака_en
	+Теленик
	+Тимошин
	+Тищенко - Стаття 2021
	Зміст
	УДК
	Про авторів
	Untitled
	Untitled

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 2
 Page size: same as current

 D:20211201145304

 Blanks
 Always
 2
 1

 D:20180918122136
 841.8898
 a4
 Blank
 595.2756

 70
 Tall
 1060
 190
 0
 1
 1

 CurrentAVDoc

 SameAsCur
 BeforeCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 0
 2

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 3 to page 139; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 70.87 points, vertical 34.02 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20211201151928

 1
 1

 BR

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1077
 169
 0
 1
 R0
 12.0000

 Odd
 3
 SubDoc
 139

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 34.0157

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 2
 139
 138
 5b9c048a-7f1f-4c3b-8081-9a223a0db7c7
 69

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 3 to page 139; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 70.87 points, vertical 34.02 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20211201151937

 1
 1

 BL

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1077
 169

 0
 1
 R0
 12.0000

 Even
 3
 SubDoc
 139

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 34.0157

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 3
 139
 137
 5c6d6052-58f8-41d7-bdf1-6f772e769ec4
 68

 1

 HistoryList_V1
 qi2base

