
UDC 004.057.4

K. Lesohorskyi, E. Zharikov

A TRANSPORT-INDEPENDENT GENERAL

PURPOSE CRYPTOGRAPHIC PROTOCOL

Abstract: The article considers the problem of the transport-independent cryptographic

protocol. We analyze requirements for general purpose cryptographic protocol. An analysis of

existing protocols is performed to highlight their drawbacks. A protocol schema and

implementation architecture are proposed, based on the ideas of perfect forward secrecy,

minimal overhead, and backward compatibility.

Keywords: Network protocols, asymmetric cryptography, key exchange algorithms,

protocol buffers.

Introduction

In the modern era, most network communications are protected by encryption

protocols. Most of these protocols were around since the 80s and are still meeting their

functional requirements today.

However, in recent years the threat of quantum computing is constantly rising. Some

quantum algorithms can solve math problems that a lot of asymmetric encryption schemes

rely on in less than polynomial time. This renders a wide range of modern asymmetric

cryptographic schemes obsolete. New encryption schemes are developed that don’t have such

vulnerabilities and are slowly integrated into existing protocols.

However, existing protocols still have certain issues coming from backward

compatibility necessities, the design philosophy of the time, or underlying security primitives.

Another sharp change in recent years is a shift towards wider adoption of UDP as a

transport layer protocol. While still performing its core functions well, TCP is morally

obsolete and developments in hardware and network failure rates enable faster

communication using UDP. This change is well-manifested by switching to the UDP-based

QUICK protocol from TCP in HTTP 3.0 [1] specification.

With the necessity to update underlying cryptographic models and transport protocols,

it might be a good time to introduce new transport-independent cryptographic protocols to

secure communications in the post-quantum era.

Research problem

The goal of this article is to propose a scheme and architecture for a general purpose

transport-independent protocol, that would enable a secure connection between two parties.

The protocol should provide perfect forward secrecy, authenticity, and integrity of underlying

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (40) 2022



 ISSN 1560-8956 15

K. Lesohorskyi, E . Zharikov

communications. The protocol should be able to easily evolve and have minimal possible

overhead.

Protocol flow

A protocol flow would consist of two distinct steps: handshake and data transfer.

During the handshake, connection details are negotiated, a shared secret key is received, and

the server is authenticated. During the data transfer step, a shared secret key is used by

symmetric encryption algorithms to encrypt the data on the client side and decrypt the data on

the server side and vice versa. General protocol flow can be seen in Figure 1.

Figure 1. General protocol flow

One of the apparent problems is the number of round trips that are required during the

handshake phase. The naive implementation can set up the secure connection in 3 roundtrips,

one for each handshake step. However, this is a major overhead and could be reduced. One

way to do this is by bundling together the parameter negotiation and authentication phase.

This way handshake is implemented in the TLS 1.2 [2], which can be seen in Figure 2.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (40) 2022

 ISSN 1560-8956 16

Figure 2. TLS 1.2 protocol schema [2]

However, a handshake can be even faster. To achieve this, ephemeral key-sharing

algorithms should be used. With TLS 1.2, the pre-master key is encrypted with the server's

public key which cannot be retrieved in one round trip. However, this can be avoided if the

client and server share public keys and derive shared secret keys independently. It is only

possible using dedicated key exchange algorithms, such as the Diffie-Hellman algorithm.

However, in this case, the same algorithm cannot be used for both verifying

authenticity and sharing a key. Thus, a separate asymmetric algorithm is used to authenticate

the server. Such a schema is used by the TLS 1.3 [3] which greatly increased performance [4].

Another benefit of using an ephemeral key exchange schema is that it provides perfect

forward secrecy to the underlying communications. Classical asymmetric schemas rely on the

security of the private key. If a private key is compromised, all past and future messages that

are encrypted with it can be decrypted by an adversary. Ephemeral key exchange schemas

create session keys instead. Even if a private key for one session is compromised, all past and

future sessions will stay secure.

This also requires negotiating the parameters for the key exchange algorithm ahead of

time, which limits the negotiation phase and cipher suite selection.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (40) 2022

 ISSN 1560-8956 17

The proposed protocol handshake schema

Cipher suite is a set of ciphers that will be used to set up encrypted communication.

Since our protocol goal is to reduce the number of round trips, we are forced to use an

ephemeral key exchange, thus cipher suite will consist of 3 algorithms:

● key exchange algorithm - derive a pre-master secret key from pre-shared

parameters and other party’s public key;

● authentication algorithm - authenticate the identity of the server;

● symmetric encryption algorithm - encrypt the data for transfer.

A key exchange algorithm, its shared parameter set, and authentication algorithm must

be negotiated ahead of time since the client must send its public key and a a special call (a

sequence of bytes to be encrypted in the server’s response) in the initial request. This

limitation does not apply to the symmetric encryption algorithm, however, as it can be

selected by the server.

To tackle this, we will split the cipher set into two components: asymmetric and

symmetric parameters. Asymmetric parameters are defined by the client and the server can

only accept or reject them. Asymmetric parameters are parameters for the key exchange and

authentication algorithm. We will refer to them as “prime parameters” for brevity. Symmetric

parameters are proposed by the client and selected by the server.

If the server does not support specified prime parameters, it responds with the error

packet and specifies a supported prime parameter list. Clients can then either try to connect

with the new parameters or downgrade to an insecure connection if the security level is

considered too low.

This approach would enable fast flow for the majority of cases when the client and

server are up to date and support the most up-to-date cipher suites and would allow a gradual

decrease in security in case one of the parties is out-of-date. The flow diagram of such a

handshake can be seen in Figure 3.

As we can see, the fast flow handshake is completed in one round trip. If the fast flow

was not possible, fallback flow could be completed in one additional round trip. One thing to

note is that fallback flow can enable the usage of asymmetric encryption key exchange

schemas since the server returns the certificate to the client even if the initial handshake

request was not fulfilled. This would enable a quick fallback to other algorithms in case a

vulnerability is found in ephemeral key exchange algorithms.

Unlike TLS which proposes a wide range of supported algorithms out-of-the-box, we

would propose using a limited range of algorithms. While it limits the fallback options in case

one of the algorithms is compromised, it increases the interoperability between different client

implementations and decreases the server’s certificate size, which is especially critical for

some post-quantum asymmetric algorithms as their key size can reach megabytes [5].

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (40) 2022

 ISSN 1560-8956 18

Figure 3. The proposed protocol schema

Another thing to note is that in the current protocol schema we do not consider the key

renegotiation. This approach is suitable for short-lived communication protocols, such as

HTTP, where only one message will be encrypted and passed in a short period of time.

However, for long-living connections, it is important to be able to renegotiate symmetric

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (40) 2022

 ISSN 1560-8956 19

https://app.diagrams.net/?page-id=QZ6qzyco_Mk_pj4rVJv9&scale=auto#G19f2J9wPEtc0eUTYNyy2cVEueNZ5xrwkS
https://app.diagrams.net/?page-id=QZ6qzyco_Mk_pj4rVJv9&scale=auto#G19f2J9wPEtc0eUTYNyy2cVEueNZ5xrwkS
https://app.diagrams.net/?page-id=QZ6qzyco_Mk_pj4rVJv9&scale=auto

encryption keys as time passes by. This can be done either by using a master key as a seed for a

random number generator which will be used to generate session keys, which then can be used

for a certain number of encryptions and deterministically re-generated by a random number

generator. This approach has little overhead and does not impose any extra complexity on the

protocol structure, however, the underlying transport protocol must guarantee the message

delivery to keep the message count in sync. If the underlying protocol does not guarantee

message delivery, however, either extra messages for key renegotiation must be added or a

sequence number appended to all data messages transferred by the protocol.

Message serialization

While not as complex as application-level protocols, presentation-level protocols tend

to have some complexity. Another noticeable detail is that such protocols tend to also be used

in proxies and embedded devices, so updating them is an extremely cumbersome task. This

enforces strict requirements on backward compatibility. For example, while migrating from

TLS 1.2 to TLS 1.3, many proxies would refuse to work with the new protocol version [6].

Thus, to enable new features an extension mechanism had to be implemented, which further

complicates the protocol. Another problem is that each implementation of the protocol has to

rely on the custom deserializer, which can introduce additional bugs and vulnerabilities.

Thus, leveraging serialization protocol to define the message template would enable

easier serialization and deserialization, less room for error in each implementation, and faster

serialization and deserialization.

Several popular open source serialization protocols exist nowadays, but the most

prominent among them are Protocol Buffers, Fast Buffers, and Apache Thrift. Their comparison

can be seen in Table 1. The performance measurement details are introduced in [7].

Table 1.

Serialization protocol comparison

Characteristic Protocol Buffers Fast Buffers Apache Thrift

Licence BSD GNU V3 Apache V2

Deserialization, 200

bytes

< 1 microsecond <1 microsecond ~1 microsecond

Deserialization, 1000

bytes

~3 microseconds ~1 microsecond ~8 microseconds

IDL flexibility High Low Moderate

Language support C, C++, Rust, Go,

Java, .NET, PHP,

JavaScript, etc.

C++ C, C++, Rust, Go,

Java, .NET, PHP,

JavaScript, etc.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (40) 2022

 ISSN 1560-8956 20

As we can see, Apache Thrift is less suitable for over-the-wire due to its poor

marshaling performance that comes from several nested non-inlinable calls in the

implementation. Apache Thrift displays worse asymptotic growth in comparison to Protocol

Buffers and Fast Buffers, which will get worse when the expected message size goes up. The

expected payload size is around 2 kilobytes due to the bigger public keys used by post-

quantum encryption algorithms.

Protocol Buffers and Fast Buffers offer low serialized payload size, high serialization

and deserialization speed, and open source license. Fast Buffers offer higher serialization and

deserialization speed, however, they lack flexible schema definition and wide programming

language support which is provided by Protocol Buffers.

While C++ is interoperable with most existing languages and can be linked as a

dynamic library, having an opportunity to implement the protocol in a wider range of

languages natively brings the benefit of easier dependency management and less environment

overhead. Another useful feature of Protocol Buffers is a oneof keyword, which allows

messages to imitate discriminated unions, which would be a useful feature since the

handshake step can respond with two message types - successful negotiation or unsupported

“prime” cipher suite.

The proposed protocol architecture

Based on the protocol schema and requirements we discussed above we now propose

an architecture for the implementation of the protocol. The architecture we propose is aimed

at object-oriented languages, however functional implementations are possible too, although

they require complex state management. Also, it’s worth noting that we propose a blocking

version of the implementation, as its implementation would be more consistent across a wide

range of languages.

A simplified UML diagram of the proposed architecture is presented in Figure 4. In

the UML diagram, we skip generated Protobuff models and some helper classes and mostly

concentrate on public API. We also violate some best practices for the sake of simplicity. For

example, the serialization provider can be split into several subinterfaces as per the interface

segregation principle [8], which would improve the testability of the implementation, but

would make the UML diagram extremely bloated. However, both client and server

connections will need access to all of the serialization capabilities, so we suggest using a

facade interface [9] that would delegate execution to a subset of specialized interfaces.

The architecture is mostly stateless, so we heavily leverage the composition of the

components while maintaining thread safety. One exceptional case is EncryptedConnection

class, which uses a decorator pattern to wrap the provided transport layer connection. The

transport layer connection lifetime is not bound to the resulting encrypted connection, so the

caller must be careful in order not to transfer data while the encrypted connection is taking

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (40) 2022

 ISSN 1560-8956 21

ownership over the channel. This is a deliberate design decision so that the underlying

connection can be re-used for further secured connection over and over again, thus decreasing

the overhead required for consecutive connections.

Figure 4. A UML diagram of the proposed architecture

The ClientConnectionFactory and ServerConnectionFactory are responsible for

orchestrating the handshake and instantiating an EncryptedConnection that can either encrypt

or decrypt data passed to it before sending it via the wrapped transport layer connection.

SymmetricChipherSuite represents a cipher suite that can be used during the data transfer

phase and is essentially a factory for the symmetric encryption algorithm.

Overall, this provides a flexible framework that is easy to use. Flow charts for

blocking client-side and server-side communication are shown in Figure 5.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (40) 2022

 ISSN 1560-8956 22

Figure 5. – Flow chart for client data transfer

Conclusion

Existing cryptographic protocols are slowly migrated toward post-quantum encryption

schemes, but still have problems, such as backward compatibility and dependency on lower-

level transport protocols, often having two different specifications for different transport-level

protocols.

In this article, we summarized the requirements for general-purpose encryption

protocols, analyzed the most efficient handshake schema, researched the potential use of

existing serialization protocols to improve backward compatibility and decrease the complexity

of the implementation, and proposed an architecture for the protocol that would meet all of the

requirements and enable easy evolution over time while providing easy-to-use API.

As a future work, improving symmetric encryption security by adopting symmetrical

key change capability can be considered. Another area of improvement could be improving

composability of prime chipher suites by splitting it into independent key exchange algorithm

and authentication algorithm.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (40) 2022

 ISSN 1560-8956 23

REFERENCES

1. HTTP 3.0 draft proposal URL: https://datatracker.ietf.org/doc/html/draft-ietf -

quic-http-34 (date of use: 11.05.2022)

2. TLS 1.2 RFC, section 7.4 handshake URL:

https://datatracker.ietf.org/doc/html/rfc5246#section-7.4 (date of use: 11.05.2022)

3. TLS 1.3 RFC, section 4 handshake URL: https://datatracker.ietf.org/

doc/html/rfc8446#section-4 (date of use: 11.05.2022)

4. TLS 1.3 Performance Analysis - Full Handshake URL:

https://www.wolfssl.com/tls-1-3 -performance -part -2-full-handshake-2/ (date of use:

11.05.2022)

5. Initial recommendations of long-term secure post-quantum systems, section 4

URL: http://pqcrypto.eu.org/docs/initial-recommendations.pdf (date of use: 11.05.2022)

6. TLS 1.3 and Proxies URL: https://www.imperialviolet.org/2018/ 03/10/tls13.html

(date of use: 11.05.2022)

7. Apache Thrift vs Protocol Buffers vs Fast Buffers URL:

https://www.eprosima.com/index.php/resources-all/performance/apache-thrift-vs-protocol-

buffers-vs-fast-buffers (date of use: 11.05.2022)

8. M. Fowler, M. Foemmel, E. Hieatt, R. Mee, R. Stafford, Patterns of Enterprise

Application Architecture, p. 476 // Pearson

9. The Facade Pattern, URL: https://www.pearsonhighered.com/assets

/samplechapter/0/3/2/1/0321247140.pdf (date of use: 11.05.2022)

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (40) 2022

 ISSN 1560-8956 24

	ФІОТ
	Akhaladze_A, O. Lisovychenko
	Akhaladze_I, O. Lisovychenko
	Lesohorskyi, E. Zharikov
	Mamuta, T. Likhouzova
	Mokryi, I. Baklan
	Mykhailenko, G. Mikhnenko, J. Chunyak, O. Petruchenko, V. Bachynskiy
	Nikitin, E. Krуlov
	Oliinyk, A. Ryzhiy
	Protsiuk_Gavrylenko_2022
	Reznikov_and_Slavgorodski
	Semchenko, Y. Oliinyk, O. Demydenko
	Stenin, M. Soldatova, O. Polshakova, S. Stenin
	Stenin, V.Pasko, I.Drozdovich, M.Soldatova, S.Stenin
	Yudov, K. Ostapchenko
	Павлов, М.М. Головченко, М.М. Ревич
	Романенко, О.Д. Фіногенов
	Смолій, Н.В. Смолій
	УДК УКР
	УДК АНГЛ

 HistoryItem_V1
 AddNumbers

 Range: From page 154 to page 157; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 70.87 points, vertical 43.94 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20220704111832

 1
 1

 BR

 1
 1
 1
 0
 0
 154
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1188
 198
 0
 1
 R0
 12.0000

 Odd
 154
 SubDoc
 157

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 43.9370

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 154
 158
 156
 144d1507-ffe4-420f-af46-f78a99a8d804
 2

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 154 to page 157; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 70.87 points, vertical 43.94 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20220704111843

 1
 1

 BL

 1
 1
 1
 0
 0
 154
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1188
 198

 0
 1
 R0
 12.0000

 Even
 154
 SubDoc
 157

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 43.9370

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 153
 158
 155
 091133e5-a6bf-488e-9d59-da8b523b7fd1
 2

 1

 HistoryList_V1
 qi2base

