

UDC 004.67

M. Mamuta, T. Likhouzova

IMPROVING THE EFFICIENCY

OF DISTRIBUTED DATA WAREHOUSES

Abstract: The problem of optimal processing and storage of big data is considered. It

is proposed to prepare a repository based on a combination of several different types of

repositories and adapted to user tasks. An algorithm for transforming the internal structure of

the repository and data synchronization has been developed. To measure performance, we

used indicators of the amount of memory used for backup and the speed of data processing.

Keywords: big data, data warehouse, optimal allocation of resources, distributed data

processing systems, cloud computing.

Introduction

Every year, the problem of storing large amounts of data on various projects becomes

more and more important in the IT industry. Interacting with big data and improving the

methods of its processing and storage is now a common task for many software developers

and technology companies. Every day in the world, a large amount of diverse data is

generated and processed, most of which is valuable and should be stored and structured in

data warehouses. When data accumulates over a period of time with high intensity, it becomes

too much for one database, or when we have different data endpoints, then we move to a

solution that uses multiple repositories and databases at once, and build the interaction

between them.

Today a large number of different repositories and databases have been developed and

are actively used, but they are aimed only at solving a rather narrow range of problems with

optimal methods. An alternative to this is a big data warehouse solution that can change the

internal structure according to user requests.

The purpose of the study: to increase the speed of big data processing.

Object of research: big data storage architecture.

Subject of research: software and algorithms for processing and storing big data.

Analysis of existing solutions

Analyzing the literature, it can be said that big data software can be both open source

and commercial projects, and most of them are cloud services and have a web interface for

querying and working with them.

Airflow [1] is a platform made by the community to create, execute and monitor

streaming tasks. Airflow has a modular architecture and uses the message queue to organize

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (40) 2022



 ISSN 1560-8956 25

M . Mamuta , T. Likhouzova

any number of executable modules. Pipelines in Airflow are configured with code that allows

you to create them dynamically.

Airflow provides a variety of integrations with services that can handle the user's data

and can run on the Google Cloud platform, Amazon web services, Microsoft Azure and many

other services. This makes Airflow easy to use in the current infrastructure. Anyone who

knows the Python programming language can try to create their own Airflow pipeline.

Google Bigtable [2] is a high-performance storage system built into the Google file

system. This is the basis of the Cloud Datastore, which is available as part of Google's cloud

platform. This is a non-relational database, but it can be described as a distributed,

multidimensional and sorted map. Each cell in a large table can have zero or more temporary

versions of the data.

Bigtable is designed to scale in the petabyte range to hundreds or thousands of

machines to make it easier to add additional machines to the system and automatically use

these resources without changing the configuration.

RethinkDB [3] is the first database for real-time web applications for open-source

documents that effectively supports complex queries. RethinkDB interacts with traditional

storage systems and implements only added nested storage structures, making it more

consistent, reliable, and easily replicated. RethinkDB offers easy scalability and fast response

to customer requests in real time.

Redis [4] is an alternative open-source cache store and key-value store for big data,

which provides an efficient data structure for indexing and speeding up operations. Redis has

significant potential for expansion in the master-slave environment. However, support for

multiple data structures makes it a better choice for situations with more frequent data access

requests.

Table 1.

Comparison of existing solutions for working with data warehouses

Name Run on your

own server

REST API Data

Querying

Selective access

to data

Data

Lake

Airflow + + + - -

Google Bigtable - - + + +

RethinkDB + - + + -

Redis + - + + -

The various types and structures of repositories and databases are aimed at optimally

solving only a narrow range of tasks, so a repository that can embody several different types

and approaches to data storage and processing will have significant advantages over others.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (40) 2022

 ISSN 1560-8956 26

Materials and methods

Tasks that need to be solved when working with big data include: data collection from

various sources, storage, data exchange with external sources and repositories, mining, finding

the necessary information in the processed data, visualization of processing results [5, 6].

Repositories for storing raw data can be used as a starting point before processing and

analyzing data to retrieve source and unmodified data from this repository, which may have

the necessary information in different variations for different types of processing.

SQL technologies can still be used in big data processing, which simplifies the

transition from the traditional type of data storage and processing without significant changes

in the code base.

NoSQL technologies implement flexible data models that may not have a specific

schema and structure, but have horizontal scalability. These databases are aimed at facilitating

the management of large-scale projects [5, 7, 8].

You can also select storage types that do not use a specific data structure, but use a

distributed file system of one or more servers and contain files with different types and

formats of storage.

The trend of transition from structured data to unstructured data [7] makes traditional

relational databases undesirable for storage. This inadequacy of relational databases

encourages the creation of efficient distributed storage mechanisms. Providing scalable,

reliable, and efficient storage for fast-growing data is a key goal of deploying a big data

storage tool. Therefore, innovative development of storage systems with improved access

performance and fault tolerance is needed.

In different scientific fields, large data sets are becoming an important part of shared

resources. Such a huge amount of data is usually stored in cloud data centers. Thus, data

replication, which is commonly used for distributed large data management, speeds up data

access, reduces access delays, and increases data availability. A detailed review of the state of

modern technologies and mechanisms in this area is given in [9, 10]. Mechanisms of data

replication in cloud systems can be classified into two main groups: static and dynamic

mechanisms. Static data replication mechanisms determine the location of replication nodes at

the design stage (Fig. 1), and dynamic replication nodes are selected at runtime. In addition,

[10] presents the systematics and comparisons of the considered mechanisms and highlights

their main features; open problems and some tips for solving them are given. The review

shows that some dynamic approaches allow you to adjust the associated replication strategies

at runtime according to changes in user behavior and network topology. In addition, they are

applicable to a service-oriented environment, where the number and location of users who

intend to access data often have to be determined very dynamically.

To date, the most important thing is to transform the internal structure of the big data

warehouse for more optimal work with them. Algorithms used to manage data in repositories.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (40) 2022

 ISSN 1560-8956 27

MapReduce algorithm

MapReduce performs transformations to divide the data to be processed into small

pieces and assign them to multiple workers. Technically, the MapReduce algorithm helps

send Map and Reduce tasks to the appropriate servers in the cluster.

MapReduce is used to process parallel tasks in large datasets using a large number of

computers (nodes). All nodes can be located in one local network and use similar equipment -

a cluster, or nodes are separated geographically and administratively, are distributed systems

and use more diverse equipment - the network. MapReduce can take advantage of the locality

of data by processing it near where it is stored to minimize overhead links. Processing can

take place on data stored either in a file system (unstructured) or in a database (structured).

Parallel PFP algorithm

Parallel Frequent Pattern is a useful tool for identifying elements that are common in a

sample. A number of important FIM algorithms have been developed to speed up the search

for such elements in the big data sample. Unfortunately, when we have too much data and we

have to use a lot of memory, the estimated cost can still be too expensive.

To overcome this problem, they began using the FP-Growth algorithm, the so-called

parallel PFP algorithm on a cluster of distributed machines. PFP distributes tasks for processing

in such a way that each machine performs a separate group of tasks for searching and

processing data. This distribution eliminates computational dependencies between machines

and, thus, the relationship between them, speeds up the search and processing of data.

Given the huge list of transactions, the algorithm finds all unique functions (sets of field

values) and excludes those functions whose frequency is lower in the whole data set. The PFP

algorithm is a common implementation, we can use any type of object to denote a function.

HPPC algorithm

HPPC implements standard collections (list, queue, queue, map) with specialized

versions that store primitive types without packing them as objects. This leads to better

memory usage and increased productivity. High-performance primitive collections have

several purposes: first, to use typical collection classes that store memory for primitive types

and avoid automatic packaging; secondly, the speed of each operation is a priority.

Results

The approach described in [6] was used to select the mechanisms of static replication.

It allows you to cluster data by the types of tasks for which they are used, and to recommend

the optimal storage format (replica type) for each cluster.

A modern system must have data backups. The left part of the figure shows a traditional

system with a main data warehouse and several backups that are updated from the main. An

architectural solution is proposed on the right side of the figure. As a dynamic replication

mechanism, the algorithm shown in Figure 2 is proposed. It is proposed to use the resources

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (40) 2022

 ISSN 1560-8956 28

available in the system, in this case disk space and computing power, with greater efficiency:

not just save backups in standard format, but store them in several different big data stores, each

of which performs a specific task better. At the same time, perform constant synchronization

between all repositories of the repository and the main repository, using data conversion

algorithms for repositories with different structures. The API will also provide access to

repositories so that users can use them and benefit from speed and efficiency. At the same time

the standard main storage can be used for its intended purpose without any changes.

Figure 1. Architectural solution

To evaluate the effectiveness of the big data warehouse, we will use two metrics:

- the amount of memory used to ensure the fault tolerance of the repository;

- speed of execution of tasks that require requests to the repository.

By adding an internal storage conversion unit, the performance of different data

warehouses can be optimized. Measurements of this are the processing time of read and write

data operations. To assess the effectiveness of the developed system, simulations of several

types of data warehouses were performed.

In the same repositories, different tasks give different processing times. Here is an

example: HDFS as the primary data warehouse (or datalake) and HBase as the replica

repository.

Assume that the data is sales of goods, records can be presented in the form of objects

with the fields "Name" and "Price".

1. Take the problem of finding the sum of all fields with "Price". For this algorithm it

is necessary to bypass each record and find their sum. At the same time, the calculation

algorithm using HDFS through the structure of the repository and the features of the

calculations in Apache Spark will spend 5.45% less time than with Hbase.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (40) 2022

 ISSN 1560-8956 29

2. Take the problem of sampling the price of a particular product by its name. Hbase

performs data selection tasks at a fixed time, and HDFS must go through all the data from

start to finish. For comparison, the search for the price of a particular product Hbase performs

for a fixed K ms, and HDFS can from X to n * X ms, where n is the number of elements from

the beginning to the desired element in the sorted sample, K is the time of element selection in

Hbase, X is the time item selection in HDFS.

Figure 2. Block diagram of the deployment of the dynamic replication mechanism

The results of experimental studies to assess the effectiveness of the proposed solution

showed that the speed of tasks increased by an average of 5%; 3% of task execution time is

spent deciding which replica to use to access data.

Conclusion

Further development of methods and software for working with large data warehouses

through the use of algorithms for adapting storage architecture is needed. A unit responsible

for putting the conversion algorithms into operation has been added to the system for

converting the internal structure of the data warehouse.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (40) 2022

 ISSN 1560-8956 30

A set of programs has been developed that allows you to choose how to enter big data,

collect and enter big data, choose an algorithm to change the internal structure of the

repository, execute the conversion algorithm, get execution results, save the execution result.

Practical meaning:

• development of software that uses existing repository replicas (created for backup) to

increase the performance of the repository as a whole;

• the advantage is that there is no need for additional space for data storage, and only

the storage control module is added.

REFERENCES

1. Airflow / Apache Software Foundation // URL: https://airflow.apache.org/

[accessed 23.10.2021]

2. Bigtable / Google Inc // URL: https://cloud.google.com/bigtable/ [accessed

23.10.2021]

3. Rethink DB / Rethink DB Community // URL:https://rethinkdb.com/ [accessed

23.10.2021]

4. Redis / Redislabs // URL:https://redis.io/ [accessed 23.10.2021]

5. Mondal, A.S., Neogy, S., Mukherjee, N. et al. A survey of issues and solutions

of health data management systems. Innovations Syst Softw Eng 15, 155–166 (2019).

https://doi.org/10.1007/s11334-019-00336-4

6. Mohebi, A., Aghabozorgi, S., Wah, T. Y., Herawan, T., Yahyapour, R. Iterative

big data clustering algorithms: a review. Software-Practice & Experience 46 (1), 107-129

(2015). https://doi.org/10.1002/spe.2341

7. Siddiqa, A., Karim, A. & Gani, A. Big data storage technologies: a survey.

Frontiers Inf Technol Electronic Eng 18, 1040–1070 (2017).

https://doi.org/10.1631/FITEE.1500441

8. Plase, D. A Systematic Review of SQL-on-Hadoop by Using Compact Data

Formats Baltic J. Modern Computing 5(2), 233-250 (2017).

http://dx.doi.org/10.22364/bjmc.2017.5.2.06

9. Nachiappan, R., Javadi, B., Calheiros, R., Matawie,K. Cloud storage reliability

for Big Data applications: A state of the art survey. Journal of Network and Computer

Applications 97, 35-47 (2017). https://doi.org/10.1016/j.jnca.2017.08.011

10.Milani, B., Navimipour, N. A comprehensive review of the data replication

techniques in the cloud environments: Major trends and future directions. Journal of

Network and Computer Applications 64, 229-238 (2016).

https://doi.org/10.1016/j.jnca.2016.02.005

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (40) 2022

 ISSN 1560-8956 31

	ФІОТ
	Akhaladze_A, O. Lisovychenko
	Akhaladze_I, O. Lisovychenko
	Lesohorskyi, E. Zharikov
	Mamuta, T. Likhouzova
	Mokryi, I. Baklan
	Mykhailenko, G. Mikhnenko, J. Chunyak, O. Petruchenko, V. Bachynskiy
	Nikitin, E. Krуlov
	Oliinyk, A. Ryzhiy
	Protsiuk_Gavrylenko_2022
	Reznikov_and_Slavgorodski
	Semchenko, Y. Oliinyk, O. Demydenko
	Stenin, M. Soldatova, O. Polshakova, S. Stenin
	Stenin, V.Pasko, I.Drozdovich, M.Soldatova, S.Stenin
	Yudov, K. Ostapchenko
	Павлов, М.М. Головченко, М.М. Ревич
	Романенко, О.Д. Фіногенов
	Смолій, Н.В. Смолій
	УДК УКР
	УДК АНГЛ

 HistoryItem_V1
 AddNumbers

 Range: From page 154 to page 157; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 70.87 points, vertical 43.94 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20220704111832

 1
 1

 BR

 1
 1
 1
 0
 0
 154
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1188
 198
 0
 1
 R0
 12.0000

 Odd
 154
 SubDoc
 157

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 43.9370

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 154
 158
 156
 144d1507-ffe4-420f-af46-f78a99a8d804
 2

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 154 to page 157; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 70.87 points, vertical 43.94 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20220704111843

 1
 1

 BL

 1
 1
 1
 0
 0
 154
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1188
 198

 0
 1
 R0
 12.0000

 Even
 154
 SubDoc
 157

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 43.9370

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 153
 158
 155
 091133e5-a6bf-488e-9d59-da8b523b7fd1
 2

 1

 HistoryList_V1
 qi2base

