
UDC 004.94 
V. Omelchenko, O. Rolik 

AUTOMATION OF RESOURCE MANAGEMENT 
IN INFORMATION SYSTEMS BASED  
ON REACTIVE VERTICAL SCALING 

Abstract: The rapid development of information systems creates new challenges for 
developers. The problem of minimizing the use of IT infrastructure resources while ensuring 
the agreed level of service is one of the critical ones in the existing conditions. The article is 
devoted to the research of existing automation methods of resource management and QoS 
indicators. Capabilities of managing computing resources in Kubernetes and in general are 
analyzed. The work provides a detailed analysis of reactive and proactive approaches, their 
advantages and disadvantages. Considerable attention is paid to vertical scaling, in particular 
to the open-source Vertical Pod Autoscaler solution. A series of experiments was performed 
to analyze the effectiveness of this approach in various conditions. Based on the results, the 
appropriate use cases for using VPA were determined. In addition, the work proposes a hybrid 
approach, which includes a reactive and proactive component, which allows you to use the 
advantages of both methods. 

Keywords: IT infrastructure, resource management, QoS, quality of service, vertical 
scaling, horizontal scaling, Kubernetes, Vertical Pod Autoscaler 

Introduction 

Nowadays, many companies prefer to place their information resources in cloud 
platforms instead of creating and supporting their own physical IT infrastructure. This 
approach has numerous advantages, including the possibility of easy and flexible scaling, 
which is a critically important attribute of modern information systems. However, the cost of 
using IT services provided by cloud service providers is constantly increasing. Therefore, the 
problem of minimizing financial costs arises when companies try to reduce their expenses on 
information services without reducing the quality of these services. At the same time, the high 
cost of computing resources and the maintenance of data centers (DC) force cloud service 
providers to use IT infrastructure management systems (IMS) [1], which allow efficient use of 
IT infrastructure resources. 

A large number of information technologies, models and management methods for the 
allocating and reallocating of computing resources are used in modern IMS, including 
management of the creation of virtual machines (VMs), operational management of VM 
resources, their migration without downtimes and degradation of the quality of the services 

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (41) 2022 

 V. Omelchenko, O. Rolik 

65 ISSN 1560-8956 



they provide [2]. In addition, IMS constantly solves the problem of dense filling of physical 
servers or cluster nodes so that the servers released as a result of such optimization can be put 
into standby mode or turned off. An equally important task to be solved by the IMS is the 
management of the quality of services provided by the IT infrastructure [1]. The IMS should 
maintain the quality of services at a stable level agreed with users, while spending the 
minimum amount of IT infrastructure resources. 

The evolution of models and methods of managing IT infrastructure resources and the 
provided quality of services has gone through a number of stages. At the first stage, models 
and methods that were developed in scientific institutions were used in experimental IMSs 
[1]. At the second stage, IMSs were built on the basis of proprietary information technologies, 
which were created by R&D divisions of companies and had a closed nature. Currently, 
specialized open-source tools or universal systems are widely used in IMSs. Due to the 
popularity of the containerization paradigm today, a large number of orchestrators such as 
Kubernetes, ECS, Nomad have emerged and are widely used to manage containerized 
applications. These solutions allow us to manage QoS (quality of service) by maintaining it at 
the agreed level and with minimal use of DC resources [3]. Analysis of management methods 
and algorithms used by orchestrators allows us to determine the expediency of using these 
methods and algorithms or the necessity of their modernization. 

One of the main approaches to manage the quality of services provided by containerized 
applications is vertical and horizontal scaling. Autoscaling allows you to adjust the level of QoS and 
the amount of reserved computing resources. In addition, containers should be placed as densely as 
possible for the most effective utilization of computing resources [4]. 

The purpose of this work is to explore the efficiency of scaling algorithms provided by 
orchestrators when solving the problems of managing QoS. 

Analysis of Kubernetes cluster capabilities  
in resource management of containerized applications 

Kubernetes is an open source platform for managing workloads and applications. It is 
one of the most universal and wide-spread solutions to manage containerized applications. 
The functionality of this system is very flexible and allows you to automate the processes of 
load balancing, as well as the deployment and scaling of applications, manage data stores and 
access permissions for them, and solve many other tasks that should be solved by IMS. 
Kubernetes manages clusters of Linux containers hosted on a group of virtual or physical 
machines as a single system. Each cluster node has special software for interaction with other 
system components. 

Resources { },jR R=  1, ,j M=  managed by Kubernetes are distributed among M 

clusters. 

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (41) 2022 

66  ISSN 1560-8956 



The structural unit of each j-th, 1, ,j M=  cluster is a node. Each node of the j-th 

cluster has a certain amount of its own resources { },ijr  where ijr  is the amount of resources of 

the i-th, node belonging to the j-th, 1, ,j M=  of the cluster, and N is the number of nodes in 

the j-th, 1, ,j M=  cluster. 

Each node is characterized by a set of parameters that together determine its power. 
For simplicity, we will assume that each node is characterized by two parameters ,( , )ij ijα β  

where  ,ij ijα β  are, respectively, the processor capacity and RAM capacity of the i-th, 1, ,i N=  

node of the j-th, 1, ,j M=  cluster. 

Applications from the set of { },j kjA a=  1, ,jk L=  are deployed on the nodes of the 

j-th cluster, where jL  is the number of containerized applications from the set .jA  Each 

instance of the application ,kja  1, ,jk L=  1, ,j M=  from the set jA  has requirements for the 

volumes of computing resources ,( , )kj kjα β  where ,kj kjα β  – respectively, the requirements for 

processor capacity and RAM capacity of the k-th application 1, ,jk L=  from the set .jA  Such 

minimum necessary requirements for computing resources in Kubernetes are called requests. 
Placing an application from the set jA  on a node of the j-th cluster is allowed to be 

done only when the node resources are sufficient for the correct functioning of the 
application. Conditions are described by the following formula: 

 , , 1, , 1, , 1, ,kj ij kj ij jk L j M i Nα α β β≤ ≤ = = =  (1) 

where ,kjα  1, ,jk L=  1, ,j M=  are requirements for a processor capacity of the 

application ;kja  ,kjβ  1, ,jk L=  1, ,j M=  – requirements for the RAM capacity of the 

application ;kja  ,ijα  1, ,i N=  1, ,j M=  is the processor capacity of the i-th, 1, ,i N=  node of 

the j-th, 1, ,j M=  cluster on which the application kja  is placed, 1, ,jk L=  1, ;j M=  ,ijβ  

1, ,i N=  1, ,j M=  is the RAM capacity of the i-th, 1, ,i N=  node of the j-th, 1, ,j M=  cluster, 

on to which is placed the application ,kja  1, ,jk L=  1, .j M=  

The Kubernetes functionality allows you to deploy applications from the set jA  by 

monitoring the fulfillment of conditions (1). 

Limits can be set for applications of the set .jA  If the j-th, 1, ,j M=  node running the 

containerized instance ,kja  1, ,jk L=  1, ,j M=  of the application from the set jA  has an 

excess of available resources compared to the request of the application kja  for resources, the 

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (41) 2022 

67 ISSN 1560-8956 



container can use more resources than specified in the request [5]. However, the application 

,kja  1, ,jk L=  1, ,j M=  cannot use more resources than specified in the limits configuration. 

Management of the level of quality of services provided by containerized applications 
from the set jA  in the IMS is carried out by automating the scaling of the resources provided 

to the applications, taking into account the limits set for the applications from the set ,jA  

resources ijr , 1, ,i N=  1, ,j M=  nodes of the j-th cluster and resources ,jR  1, ,j M=  of the 

cluster. 
Scaling in conditions of insufficient computing resources can lead to denial of service 

to applications from the set .jA  

Features of autoscaling of IT infrastructure resources 

Each application ,kja  ,1, , jk L= … , 1, ,j M=  from the set jA  has requirements for the 

volumes of computing resources .( , )kj kjα β  These volumes are determined by the target values 

bkQ  of the service quality level parameters. Where ,bkQ 1, ,b D=  1, ,jk L=  is the target value 

of the quality indicator of service b-th, 1, ,b D=  provided by the containerized application 

,kja  1, ,jk L=  and D is the number of quality indicators. 

In the IMS during QoS management, the actual values bkjq  of the service quality level 

parameters by the application ,kja  1, ,jk L=  1, ,j M=  are measured. Where ,bkjq  1, ,b D=  

1, ,jk L=  1, ,j M=  is the actual value of b-th, 1, ,b D=  the service quality indicator provided 

by the containerized application ,kja  1, ,jk L=  1, ,j M=  and D is the number of quality 

indicators. The IMS performs QoS management in such a way that the conditions are met 

 , 1, , 1, , 1, .bkj bk jq Q b D k L j M≤ = = =  (2) 

The number of volumes of resources ),( kj kjα β  provided to the application for the 

performance of target indicators ,bkQ 1, ,b D=  quality is determined under certain conditions. 

For example, the response time of the application kja  for a user request, measured at the 

output of the IT infrastructure, which also depends on the number of user requests per unit of 
time. When changing the operating conditions of the application ,kja  for example, with a 

significant increase in the number of requests, the actual values ,bkjq  1, ,b D=  of the QoS 

indicators exceed the target ,bkQ 1, ,b D=  1, ,jk L=  and condition (2) ceases to be fulfilled. In 

order for the QoS indicators to return to the target values under the new operating conditions 

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (41) 2022 

68  ISSN 1560-8956 



of the application ,kja  i.e. to make condition (2) fulfilled, additional ),( kj kjα β∆ ∆  computing 

resources must be added to the container of the kja  application. Adding additional resources 

),( kj kjα β∆ ∆  is performed by autoscaling of node and cluster resources. 

During the process of developing autoscaling methods that will be used in IMS for 
QoS management two main problems must be solved. The first problem is that it is necessary 
to determine when and under what conditions it is necessary to scale the resources for the 
applications from the set .jA  The second problem is to estimate the minimum amount of 

additional resources ),( kj kjα β∆ ∆  that must be provided to applications kja  from the set ,jA  

for which condition (2) is not fulfilled will not be fulfilled in the near future in order not to 
violate QoS requirements. 

Autoscaling methods can be divided into two large groups – reactive and proactive. 
Reactive methods are based on the constant measurement of the actual values of 

indicators ,bkjq  1, ,b D=  1, ,jk L=  1, ,j M=  and monitoring the fulfillment of condition (2). 

If condition (2) is not fulfilled, reactive methods provide additional resources ),( kj kjα β∆ ∆  

during vertical scaling of applications kja  from the set .jA  Another option is horizontal 

scaling – deploying new instances of applications for which condition (2) is not fulfilled on 
additional nodes. If the percentage of resource usage decreases, then reverse scaling is 
performed. As a result, the number of additional resources ),( kj kjα β∆ ∆  provided to the 

application kja  decreases to zero in the future. 

Proactive methods perform QoS management in advance without waiting for 
condition (2) to stop being fulfilled. For this, the dynamics of changes in the actual values of 

indicators ,bkjq  1, ,b D=  1, ,jk L=  1, ,j M=  the quality of functioning of all applications 

from the set jA  are monitored. If the dynamics is negative and QoS requirements will be 

violated in the near future, then additional resources ),( kj kjα β∆ ∆  are provided in advance, 

without waiting for condition (2) to stop being fulfilled. In addition, the algorithm analyzes 
historical data to determine the amount of additional resources ( ),,kj kjα β∆ ∆  which should be 

added for containers in case of non-fulfillment of conditions (2). 
The proactive method, in contrast to the reactive one, allows to improve QoS 

management indicators, since there is no delay before scaling under typical loads. In addition, 
the proactive method can accurately estimate the required amount of computing resources at 
any time, which allows you to scale the application down faster than when using the reactive 
method [6]. The main disadvantage of the proactive method is its complexity. In particular, 
algorithms based on time series analysis and neural networks are used to implement this 

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (41) 2022 

69 ISSN 1560-8956 



approach. Also, this method works well only when there are periodic overloads that can be 
predicted. 

If it is necessary to minimize the costs of resources by reducing the volumes of 
reserved resources, it is advisable to use the combined method of autoscaling, when the 
reactive component is used to determine the moment when condition (2) ceases to be fulfilled, 
and the components of the proactive method are used when estimating the minimum 
necessary amount of additional resources ),( kj kjα β∆ ∆  based on the analysis of historical data. 

For example, this approach was used in Vertical Pod Autoscaler (VPA) of the Kubernetes 
platform. The combined approach can be used in QoS management only when a short-term 
drop in quality of service indicators or denial of service to users for some time is acceptable. 

Analysis of the autoscaling algorithm in Vertical Pod Autoscaler 

For effective proactive QoS management and taking into account the specifics of the 
operation of each application from the set ,jA  the IMS must constantly receive information 

about the actual values of the indicators ,bkjq  1, ,b D=  1, ,jk L=  1, ,j M=  of the quality of 

services, the current value of the number of user requests to each instance of the application 

,kja  1, ,jk L=  1, ,j M=  the available use of resource volumes * * ),( kij kijα β  of applications 

from the set .jA  Here *
kijα  and β*

kij are the actual usage, respectively, of the processor 

capacity and RAM capacity of the i-th, 1, ,i N=  by the j-th node, 1, ,j M=  of the cluster on 

which the application ,kja  1, ,jk L=  1, ,j M=  is run. 

The autoscaling algorithm used in VPA calculates the needs for computing resources 

based on the analysis of historical data of the values ( ) ( )* * ),( kij kijt tα β  – the use of processor 

time ( )* ,kij tα  and of memory ( )*
kij tβ  for the previous periods of the application ,kja  

1, ,jk L=  1, ,j M=  which is installed on the i-th, 1, ,i N=  node of the j-th, 1, ,j M=  cluster. 

During operation, the VPA algorithm recalculates ),( kij kijα β  – target values, ),( kij kijα β− −  – 

lower and ),( kij kijα β+ +  – upper thresholds of resource utilization container of the application 

akij, which is run on the i-th node j-th cluster. 
The target values ),( kij kijα β  are directly applied to the configuration of the container's 

resources. 

The lower bound ),( kij kijα β− −  determines the volume of resources at which it is not 

guaranteed that the application kija  has enough resources for full operation. If the current 

indicators of resource utilization are less than this threshold, then VPA initiates the 

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (41) 2022 

70  ISSN 1560-8956 



reconfiguration of the container with a different resource configuration in order to reduce 
unprofitable resource reservation. 

The upper bound ),( kij kijα β+ +  is an indicator of unprofitable resource reservation. 

Resources reserved above this threshold are guaranteed not to be used by an application from 
the set ,jA  when viewed relative to historical data. Similarly to the lower threshold 

( ),,kij kijα β− −  if the current resource usage indicators * * ),( kij kijα β  of application kja  are higher 

than this threshold, then the VPA initiates the reconfiguration of the container with increased 
resources from in order to improve the stability of the application. 

In VPA, resources requests and limits are calculated as a percentile relative to 

previously obtained values of the usage of resource volumes ( ).,kij kijα β+ +  

The lower threshold ),( kij kijα β− −  is set at the level of 0.5. This means that at least 50% 

of the time the kja  application had enough resources to provide quality service. 

The target value ),( kij kijα β  is set at the level of 0.9, which means that with the amount 

of resources equal to ( ),,kij kijα β  90% of the time the application kja  provided quality service. 

The upper threshold * * ),( kij kijα β  is set at the level of 0.95. That is, quality service was 

provided by the kja  application 95% of the time. 

This approach can be justified for the processor time kja , because in the case of a lack 

of this resource, the application kja  continues to work, but more slowly, so a slight 

degradation of QoS indicators is possible. However, in the case of the RAM capacity resource 
,kijβ  the approach based on percentile calculation can lead to unacceptable critical 

consequences, which will significantly affect the efficiency of service provision. The lack of 
RAM kijβ  for the application kja  will lead to a denial of service due to the OOM error, and if 

the current error is not reacted to in time, then to systematic interruptions in the provision of 
services by the application .kja  Therefore, it is worth increasing the limits on resource 

requests to prevent denials of service. 
The VPA algorithm gives preference to more recent data when calculating 

recommended resource threshold values. All values ( ) ( )* * ),( kij kijt tα β  of resource 

consumption are divided into intervals, and each interval has its own weight depending on 
recency when calculating a specific percentile. The weight function has the following form: 

 
0( )

( ) 2 ,
t t

hW t
−

=  (3) 

where t is the end time of the period, 0t  is the time of the beginning of the accumulation of 

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (41) 2022 

71 ISSN 1560-8956 



the history of values ( ) ( )* * ),( kij kijt tα β  is the length of the intervals of dividing historical 

data.  
For each interval, the weight factor (3) adjusts the time of resource usage relative to 

other intervals: 

 
1,

( ),i i
i M

H G W t
=

= ⋅∑  (4) 

where H is the final set of historical data, Gi is the interval of historical data, it  is the end time 

of the period of the i-th group.  
In Fig. 1 shows the visualization of historical data on the use of some resource with 

( ) ( )* *( ).,kij kijt tα β  Time is divided into three intervals. 

 

Figure 1. Raw historical data of a resource usage 

After applying the weights, the historical data from the last interval has the most 
significant impact on the percentile calculation, and the first interval has the least impact, as 
shown in Fig. 2. 

 

Figure 2. Transformed historical data of a resource usage 

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (41) 2022 

72  ISSN 1560-8956 



This approach has a significant drawback – in the case when the periodicity of the 
load is significantly higher than the duration of the period of division into intervals, then the 
weighting factors out the influence of, for example, past peak loads. This will cause the 
containers to restart repeatedly. 

The efficiency of processing historical data ( )*
kij tα  of the processor time usage is affected 

by throttling – limiting the use of the processor by some application kja  in case of exceeding the set 

limits on resources. It is used by the operating system during distributing processor time between all 
applications installed on the same physical server in proportion to requests for resources. 

Based on the analysis of historical data ( )*
kij tα  of the processor time usage, it is not 

possible to clearly establish that the operation of the application is limited by the throttling 
mechanism, and, therefore, it is not possible to calculate the amount of processor time that is 

additionally required for full operation. Historical data ( )*
kij tα  in this case indicates 100% 

use of processor time. 
One possible solution to this problem is the collection and use of historical data of 

throttling. However, it is quite difficult to accurately estimate the required amount of processing 
time that should be provided by the application kja  based on throttling historical data. 

VPA uses the following approach to solve this problem. The upper limit is calculated 
as the 95th percentile of historical data. In the event that application kja  needs more processor 

time ,kija  then there is a 5% margin, the use of which will affect the given 95th percentile in 

future recommendation calculations. Moreover, it is possible to set limits on processor time 
,kija  greater than requests, which will make throttling more predictable and allow to use of 

more processor time if possible. 

Study of the operation of the VPA algorithm 

To determine the optimal values of resource allocation VPA algorithm relies on the 

analysis of actual historical data ( ) ( )* * ),( kij kijt tα β  of processing time ( )*
kij tα  and memory 

( )*
kij tβ  produced by the application ,kja  1, ,jk L=  1, ,j M=  which is deployed on the i-th, 

1, ,i N=  node of the j-th, 1, ,j M=  cluster. At the same time, other Kubernetes work 

mechanisms are taken into account, especially how requests and limits work. This mechanism 
can limit the use of the CPU for the application, which can interfere with the calculation of 
the necessary amount of this resource for the full operation of the application in some cases. 
In this article, this mechanism is investigated experimentally. 

The GKE cluster (Google Kubernetes Engine), which includes seven virtual machines 
of type e2-highcpu-4 (2 vCPU, 4GB). This type of machine allows you to fully perform CPU-

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (41) 2022 

73 ISSN 1560-8956 



oriented tasks. The application under test is a web server that performs calculations on each 
request in order to load the CPU. Specialized software Locust is used for load testing, an 
instance of which is placed in the test cluster in order to minimize the impact of the network 
on the test results. The resources limits compared to the request is 30%. The decay-half-life 
period is equal to the loading period. 

The operation of the algorithm is studied without edge cases – a monotonically 
increasing or decreasing periodic load. The load increases by 5% with each subsequent 
period. From the analysis of Fig. 3. it can be seen that in this case this algorithm responds in 
time to a gradual increase in load and provides more resources for the application. 

QoS metrics – in this case, request response time – are not degraded, as the 
experiment has only a slight overrun of CPU requests that matches the limit values. However, 
if the node did not have free resources, a degradation in QoS would be possible. 

Studies of the operation of the reactive VPA algorithm with the presence of periodic 
short-term high loads showed the same results. 

The developers of the VPA algorithm tried to eliminate some of the shortcomings of 
the reactive approach, but this creates new problems. So, for example, one of the 
optimizations is designed to level atypical instantaneous high loads in addition by introducing 
a coefficient for the calculated recommended values. Consider a situation where the 99th 
percentile of application load is within 100 millicores, and the 100th percentile is 500 
millicores. You can allocate 100% load for the application, but this will lead to the reservation 
of unprofitable resources in more than 99% of the entire working time, so it makes sense to 
ignore such a load, which will not lead to critical consequences, since the processor time for 
processing requests at moments of atypical load will be used from the next period. 

 

Figure 3. Results of VPA work 

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (41) 2022 

74  ISSN 1560-8956 



However, this can be a problem in the case when short-term high loads are a feature of 
the application and the usage value of n is much higher than the average, and the time of such 
loads is much shorter than the time of the minimum load. As can be seen from the analysis of 
Fig. 4 in such a case, the 95th percentile limit is much larger than in the case of a balanced load, 
which leads to a significant degradation of the quality of service indicators at such times. 

 

Figure 4. Operation of VPA in the presence of short-term high loads 

Picture Fig. 5. shows an example of the test application, in which the load varies from 
150 requests per second to 300. The peak load time is 25% of the period. Limiting the 95th 
percentile in this case leads to a drop in the quality of service over a fairly long period of work. 

 

Figure 5. Response time – 95th percentile 

This experiment shows that with this type of load, it is better not to use this 
implementation of the reactive algorithm at all or to give preference to proactive algorithms, 
which are more flexible in general. In particular, a proactive approach will allow you to 

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (41) 2022 

75 ISSN 1560-8956 



prepare for such a load by pre-scaling the application if necessary. This is not a problem of 
reactive algorithms in general, but of the implementation analyzed in this article. 

The research of the operation of the VPA algorithm under complex periodic loading 
made it possible to obtain the following results. 

In this experiment, VPA has a decay-half-life equivalent to a shorter periodicity. The 
maximum load is 300 requests per second, and the minimum is 200 requests. In addition, as 
can be seen from Fig. 6 for some time there is no maximum load – this is a kind of simulation 
of "weekdays off". 

 

Figure 6. Reponse time – 95th percentile 

In the picture Fig. 7. it can be seen that the reactive algorithm reacts in the expected 
way, especially, in periods of absence of high loads, it reduces requests for processing time. 
On the one hand, this is good, because in this way the algorithm minimizes unprofitable 
reservation, on the other hand, it leads to a critical drop of QoS during the period of high 
loads. This is clearly visible in the second period depicted in the graph, when the application 
does not get enough CPU time for a while. 

Also from the comparison of Fig. 6 and Fig. 7 a long delay can be observed between 
the reduction of the load to the minimum level and the VPA response to it. This means that 
the resource has not been used for a long time. This is due to the fact that in this approach it is 
difficult to assess when it is worth reducing the number of allocated resources when load is 
decreasing. 

In such cases, the reactive algorithm is an inappropriate solution, as it leads to 
systematic violations of service quality indicators. 

 

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (41) 2022 

76  ISSN 1560-8956 



 

Figure 7. Results of VPA work 

Conclusions 

The paper analyzes approaches to automatic scaling – reactive and proactive, which are 
implemented in Kubernetes in Vertical Pod Autoscaler. On the basis of the conducted analysis and 
practical experiments, it was concluded that reactive autoscaling negatively affects the operation of 
the application under periodic load, in particular, when the load on the application increases, and 
leads to degradation of QoS indicators. In addition, there is a significant delay between the load drop 
and the reduction of the allocated resource in order to exclude premature reallocations at moments 
of temporary load drop due to external reasons. Therefore, this approach should not be used for 
scaling in conditions of short-term load fluctuations. This approach to managing the quality of 
services provided by critical IT infrastructure should be avoided. 

The reactive approach is suitable for static or monotonically increasing or decreasing 
loads, or when the load is not periodic and its value cannot be estimated in the future. Also, 
this approach can be used as part of a complex proactive approach when scaling IT 
infrastructure resources. 

REFERENCES 

1. Ролик А. И. Управление корпоративной ИТ-инфраструктурой / А.И. Ролик, 
С.Ф. Теленик, М.В. Ясочка // К.: Наукова думка, 2018. – 576 с. 

2. Rolik O., Kolesnik V., Halushko D. (2018). IT Service Quality Management Based 
on Fuzzy Logic. in. Proc. International Scientific-Practical Conference on Problems of 
Infocommunications Science and Technology, PIC S and T 2018, October 9-12, Kharkiv. – 
IEEE, 2018. – pp. 604–608. 

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (41) 2022 

77 ISSN 1560-8956 



3. Rolik O., Bodaniuk M., Kolesnik V., and Samotyy, V. (2017). The Algorithm for 
Sequential Analysis of Variants for Distribution of Virtual Machines in Data Center. 
FedCSIS., – Czes Republic, 3-6 Sept. 2017, pp. 183–187.  

4. Rolik O., Telenyk S., Zharikov E., and Samotyy V.Dynamic Virtual Machine 
Allocation Based on Adaptive Genetic Algorithm.in Proc. CLOUD COMPUTING 2017: The 
Eighth International Conference on Cloud Computing, GRIDs, and Virtualization, February 
19-23, 2017, Athens, Greece, IARIA, 2017, pp. 108-114. 

5. Resource Management for Pods and Containers. Kubernetes, 
kubernetes.io/docs/concepts/configuration/manage-resources-containers. Accessed 23 Nov. 2022. 

6. Chenhao Qu, Rodrigo N. Calheiros and Rajkumar Buyya. 2018. Auto-Scaling Web 
Applications in Clouds: A Taxonomy and Survey. ACM Comput. Surv. 51, 4, Article 73 (July 
2019), 33 pages. https://doi.org/10.1145/3148149. 

7. Martin Straesser, Johannes Grohmann, Jóakim von Kistowski, Simon Eismann, 
André Bauer, and Samuel Kounev. 2022. Why Is It Not Solved Yet? Challenges for 
Production-Ready Autoscaling (Author Preprint). In Proceedings of the 2022 ACM/SPEC 
International Conference on Performance Engineering (ICPE ’22), April 9–13, 2022, Bejing, 
China. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3489525.3511680 

8. Yahya Al-Dhuraibi, Fawaz Paraiso, Nabil Djarallah, and Philippe Merle. 
Autonomic vertical elasticity of docker containers with elasticdocker. In 2017 IEEE 10th 
international conference on cloud computing (CLOUD), pages 472–479. IEEE, 2017. 

9. Laura R. Moore, Kathryn Bean, and Tariq Ellahi. 2013. Transforming reactive 
auto-scaling into proactive auto-scaling. In Proceedings of the 3rd International Workshop on 
Cloud Data and Platforms (CloudDP '13). Association for Computing Machinery, New York, 
NY, USA, 7–12. https://doi.org/10.1145/2460756.2460758. 

 
  

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (41) 2022 

78  ISSN 1560-8956 

https://doi.org/10.1145/3489525.3511680
https://doi.org/10.1145/2460756.2460758

	+Akhaladze_I_Lisovychenko
	1. I. Akhaladze. Improving the efficiency of streaming video processing through the use of serverless technologies. 2021. № 39. C.32-40 URL: http://asac.kpi.ua/article/view/247393

	+Akhaladze_Lisovychenko
	1. A. Akhaladze Using IoT to synchronize drone flight paths 2021. № 39. C.20-26  URL: http://asac.kpi.ua/article/view/247381 https://doi.org/10.20535/1560-8956.39.2021.247381

	+N. Smolij, O. Lisovychenko, V. Smolij
	+O. Paladiiev, O. Lisovychenko
	INFLUENCE OF THE OPPONENT COLOR MODEL  ON THE GENERALIZATION CAPACITY OF NEURAL NETWORKS
	Introduction
	Pre-processing of images
	Formulation of the problem
	Opponent Process Theory of color perception
	Advantages of using the opponent model
	Software implementation
	Analysis of results
	REFERENCES


	+A.Stenin, V.Pasko, M.Tkach, M.Soldatova, I.Drozdovich_АСАУ_нове
	+A. Stenin, V. Pasko, M. Soldatova, I. Drozdovich
	+V. Nikitin, E. Krуlov
	+НОВИЙ_Кончинський Ліхоузова
	+V. Omelchenko, O. Rolik
	+Жураковська_Чмерук
	+O. Gavrylenko, M. Miahkyi, Y. Zhurakovskyi
	O. Gavrylenko, M. Miahkyi, Y. Zhurakovskyi
	Introduction
	REFERENCES

	+КОРОЧКІН_РУСАНОВА_КРУТЬКО
	+V. Mykhailenko, G. Mikhnenko, Y. Trostenko, V. Svyatnenko, J. Chunyak, O. Petruchenko, V. Bachynskiy
	A MATHEMATICAL MODEL OF THE three-phase  AC TO DC voltage converter WITH  THREE-ZONE VOLTAGE CONTROL
	Introduction
	Analysis of electromagnetic processes

	Conclusions


	+I. Klymenko, A. Gaidai, S. Nikolskyi, V. Tkachenko
	REFERENCES

	Зміст
	O. Gavrylenko, M. Miahkyi, Y. Zhurakovskyi THE TASK OF ANALYZING PUBLICATIONS TO BUILD A  FORECAST FOR CHANGES IN CRYPTOCURRENCY RATES 90

	УДК
	Тhe task of analyzing publications to build a forecast for changes in cryptocurrency rates / Gavrylenko O., Miahkyi M., Zhurakovskyi Y. // Interdepartmental scientific-technical journal «Adaptive systems of automatic control».- 2022.- № 2 (41).-Р. 90-99
	Ref. 7, pic. 4, tabl. 1




