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PROACTIVE AUTOMATIC UP-SCALING FOR KUBERNETES 

Abstract: Container management systems are widely used in cloud computing. The 

leader of the market is Kubernetes. There no ability to configure a proactive scaling for your 

service using Kubernetes. The research presents an autoscaling technique based on a 

proactive approach to scale services in Kubernetes.  
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Introduction 

Cloud computing and containers are getting popular nowadays. More businesses use 

cloud providers instead of dedicated manageable machines to host applications. This allows 

saving costs on hardware and on professionals who support its functionality [1]. In addition, 

cloud computing supports easy scalability and it allows avoiding underprovisioning or 

overprovisioning of resources [2]. 

Because the workload on services is not constant, much attention paid to autoscaling - 

the process of automatically scaling application instances with increasing workload. Effective 

autoscaling improves the quality of service (other words minimize response time for 

customers). Automatic scaling of resources based on workload change reduces provisioning 

costs and helps clients to achieve performance objectives. The cloud provider, on the other 

hand, should attempt to consolidate load onto highly utilized physical machines, in order to 

reduce wasted power consumption [3]. 

Autoscaling can be divide into two types - reactive and proactive. With a reactive 

approach, scaling is based on past workload data. On the opposite, with a proactive approach 

scaling decision based on the forecasted workload. Workload forecasting is made with the 

help of time series prediction methods [4,5] or machine learning, as presented in [6,7]. 

Reactive scaling has the following disadvantage: It takes time to launch a new 

instance, so when the scaling decision made it will take some time until the new instance will 

be available. During this period the QOS (quality of service, average response time) is 

decreased. Proactive scaling solves this problem (assuming an effective load prediction 

system) because resources allocated in advance, see Fig. 2. 

A container is a standard unit of software that packages up a code and all its 

dependencies so the application runs quickly and reliably from one computing environment to 

another. A Docker container image is a lightweight, standalone, executable package of 

software that includes everything needed to run an application: code, runtime, system tools, 

system libraries and settings [8]. 

Containers have made a big impact to cloud computing, making easy for developers to 

deploy apps. Now it is an industry standard of delivering apps. Applications mostly developed 
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using a microservice technique. In that case, one microservice is one Docker container. Large 

applications have many containers, and it would be difficult to manage every single one of 

them manually. 

  

Figure 1. Reactive scaling Figure 2. Proactive scaling 

To build a big system with a thousand containers, the container management (or 

orchestration) systems created. Some examples: Kubernetes, Docker Swarm and Apache Mesos. 

The most popular container management system is Kubernetes, developed by Google Inc. It 

allows automating the deployment, scaling, and management of containerized applications. 

Kubernetes widely used as an important part of the cloud computing infrastructure [9]. 

AWS gives the ability to fully manage Kubernetes cluster using EC2 or to run it without needing 

to provision using Amazon Elastic Container Service [10], Google Cloud Platform has 

Kubernetes Engine, that allows to get up and running with Kubernetes in no time, by completely 

eliminating the need to install, manage, and operate your own Kubernetes clusters. [11]. 

Currently, Kubernetes supports only manual scaling or reactive autoscaling [12]. 

Search for articles on the implementation of proactive scaling for Kubernetes gave no results. 

This paper presents a method of creating a proactive scaling system for the 

Kubernetes. The efficiency of the proposed proactive scaling will be measured and compared 

to the standard reactive method. The average response time of a scalable service will be 

measured and used as a performance metric. 

Mathematical model for proactive scaling 

To implement a proactive scaling system the workload prediction method is required. 

Methods to predict time series from statistics are well suited: Exponential Smoothing 

(ES) and Double Exponential Smoothing (DES). DES method is used for forecasting in 

proactive autoscaling in [13, 14] and it showed its effectiveness. The time series may have the 

following characteristics: trend and seasonality. The task of autoscaling related to the 

application workload trend. Seasonality not covered in this paper. 

In the ES method, the prediction of the following time series values performed using 

the formula [15]: 

                   (1) 
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where t - forecast period, 

   - Forecasted value, 

    - Previous forecasted value, 

  - Actual value for the previous period, 

  - Data smoothing factor [0, 1]. 

Simple exponential smoothing does not do well when there is a trend in the data, 

which is inconvenient [16]. In such situations better to use DES method, which is the 

recursive application of an exponential filter twice. DES method takes into account the trend 

of the time series and has two formulas [17]: 

                           (2) 

                             (3) 

where t - forecast period, 

 - Data smoothing factor [0, 1], 

 - Trend smoothing factor [0, 1], 

b - Trend in moment t, 

s - Prediction in moment t 

  - Actual value for the previous period. 

To forecast beyond xt: 

            (4) 

Both forecasting methods (ES, DES) used in this paper. 

Proactive automatic up-scaling for Kubernetes 

Proposed proactive scaling system parts are: 

 Kubernetes cluster 

 Time series database 

 Scaler service 

The proactive scaling system architecture shown in Fig. 3. 

 

Figure 3. Proactive Scaling System  

Architecture for Kubernetes 
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A pod is the smallest entity in a Kubernetes, and it is a one Docker container usually. 

In that case, it is a containerized target application, which will be scaled. 

Each Kubernetes pod writes data about CPU workload to the time series database during 

a periodic task. The scaling service also has a periodic task that performs the following logic: 

1. Take the last N records in the database for each pod. 

2. Predict the workload using ES/DES method and data from the database. 

3. Scale if mean predicted workload is more than a threshold. 

Proactive scaling system for Kubernetes implemented using the Java programming 

language and Spring Framework 5. Database InfluxDB chosen for storing time series. All 

source code is available on GitHub [18]. Scaler settings are: 

 The interval for recording CPU load data for pods is 10 seconds. 

 The interval of the periodic scaling task is 30 seconds. 

 Prediction time is 1 minute. 

 Prediction based on workload records for the last 2 minutes. 

 Scaling threshold is 80% 

Experiments 

Experiments performed using Minikube, an application for running the Kubernetes 

cluster on a single host [19]. It runs using a virtual machine called VirtualBox 5. Virtual 

machine settings are two CPU x 2.0 GHz, 4 GB RAM. 

JMeter 5.0 is a tool to load test functional behavior and measure performance 

developed by the Apache Software Foundation [20]. It used to test application performance 

during different scenarios. 

Each experiment repeated 5 times, and average results are present in tables. 

Experiments are modeling increase of application workload. The first experiment is modeling 

smooth increasing of a workload; the second is about rapid increasing. 

In both experiments   is equals to 0.75 in ES and DES methods,   is equals to 0.5. 

1. Experiment #1: Small trend 

In this experiment, the workload is increasing slowly. 

 Experiment time: 10 min 30 sec. 

 The number of requests per second: 4-125. 

 The maximum number of pods: 3. 
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Table 1 

Comparison of the results of experiment №1 

Parameter Reactive Proactive (ES) Proactive (DES) 

Requests processed 32429 32445 (+0.05%) 32275 (-0.48%) 

Average request time 79.33 76.67 (-3.36%) 70.33 (-11.34%) 

Median request time 37.67 31.67 (-15.93%) 31.67 (-15.93%) 

Throughput (r/s) 51.47 51.50 (+0.05%) 51.23 (-0.47%) 

A proactive approach to scaling can improve the average response time by 11.34% in 

a load scenario with a small trend. DES again is more efficient than the default for Kubernetes 

reactive approach and the proactive scaling using ES. 

2. Experiment #2: Large trend 

In this experiment, the workload is increasing rapidly. 

 Experiment time: 7 min 30 sec. 

 The number of requests per second: 10-100. 

 The maximum number of pods: 3. 

A proactive scaling could improve the average response time up to 14.75% in a high-

trend scenario. Processed request count, median request time and throughput are a little bit 

better with DES method. 

Table 2 

Comparison of the results of experiment №2 

Parameter Reac

tive 

Proactive (ES) Proactive (DES) 

Requests 

processed 

2193

7 

22559 

(+2.83%) 

23054 (+5.09%) 

Average request 

time 

61.0

0 

52.00 (-

14.75%) 

52.00 (-14.75%) 

Median request 

time 

28.3

3 

23.67 (-

16.47%) 

26.33 (-7.06%) 

Throughput (r/s) 48.7

4 

50.13 

(+2.83%) 

51.23 (+4.36%) 

 

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023 

 ISSN 1560-8956 36



 

Conclusion 

The experiment performed by two scenarios: with small (4.1) and large (4.2) trends. In 

each scenario experiment first performed with reactive autoscaling, then with proactive 

autoscaling using the ES model of time series analysis, and then with proactive autoscaling 

using DES model. By comparing results from various scenarios and prediction models, we 

can conclude that workload forecasting minimizes the average response time of application. 

There is also noticeable that the DES model is more efficient than the ES model in both 

scenarios. The reason is that the DES method takes into account the trend of the time series. 

Also regarding experiments, we can make the next conclusions: 

1. Reactive scaling is more efficient in scenarios with a small workload trend. The 

reason is that smooth increasing of workload makes possible for proactive autoscaler to work 

on time. 

2. Proactive scaling is more efficient in the scenarios with a rapid workload increase. 

Directions for future research: 

 Search for parameter values and for DES, to archive the best average response time. 

 Comparison of the effectiveness of different methods for predicting the workload. 

 Hybrid scaling system (reactive and proactive) for Kubernetes. 

 Proactive scaling that will take into account communications between 

microservices. 

 Technologically fit solution into Kubernetes infrastructure for easy plugging it as 

Kubernetes extension. 

 Technologically add support for Prometheus timeseries database which is widely 

used to collect metrics and monitor microservices. 
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