
UDCV 004.042

D. Gutman, O. Syrota

PROACTIVE AUTOMATIC UP-SCALING FOR KUBERNETES

Abstract: Container management systems are widely used in cloud computing. The

leader of the market is Kubernetes. There no ability to configure a proactive scaling for your

service using Kubernetes. The research presents an autoscaling technique based on a

proactive approach to scale services in Kubernetes.

Keywords: Autoscaling, cloud computing, Kubernetes, proactive scaling, reactive scaling.

Introduction

Cloud computing and containers are getting popular nowadays. More businesses use

cloud providers instead of dedicated manageable machines to host applications. This allows

saving costs on hardware and on professionals who support its functionality [1]. In addition,

cloud computing supports easy scalability and it allows avoiding underprovisioning or

overprovisioning of resources [2].

Because the workload on services is not constant, much attention paid to autoscaling -

the process of automatically scaling application instances with increasing workload. Effective

autoscaling improves the quality of service (other words minimize response time for

customers). Automatic scaling of resources based on workload change reduces provisioning

costs and helps clients to achieve performance objectives. The cloud provider, on the other

hand, should attempt to consolidate load onto highly utilized physical machines, in order to

reduce wasted power consumption [3].

Autoscaling can be divide into two types - reactive and proactive. With a reactive

approach, scaling is based on past workload data. On the opposite, with a proactive approach

scaling decision based on the forecasted workload. Workload forecasting is made with the

help of time series prediction methods [4,5] or machine learning, as presented in [6,7].

Reactive scaling has the following disadvantage: It takes time to launch a new

instance, so when the scaling decision made it will take some time until the new instance will

be available. During this period the QOS (quality of service, average response time) is

decreased. Proactive scaling solves this problem (assuming an effective load prediction

system) because resources allocated in advance, see Fig. 2.

A container is a standard unit of software that packages up a code and all its

dependencies so the application runs quickly and reliably from one computing environment to

another. A Docker container image is a lightweight, standalone, executable package of

software that includes everything needed to run an application: code, runtime, system tools,

system libraries and settings [8].

Containers have made a big impact to cloud computing, making easy for developers to

deploy apps. Now it is an industry standard of delivering apps. Applications mostly developed

© D. Gutman, O. Syrota

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 32

using a microservice technique. In that case, one microservice is one Docker container. Large

applications have many containers, and it would be difficult to manage every single one of

them manually.

Figure 1. Reactive scaling Figure 2. Proactive scaling

To build a big system with a thousand containers, the container management (or

orchestration) systems created. Some examples: Kubernetes, Docker Swarm and Apache Mesos.

The most popular container management system is Kubernetes, developed by Google Inc. It

allows automating the deployment, scaling, and management of containerized applications.

Kubernetes widely used as an important part of the cloud computing infrastructure [9].

AWS gives the ability to fully manage Kubernetes cluster using EC2 or to run it without needing

to provision using Amazon Elastic Container Service [10], Google Cloud Platform has

Kubernetes Engine, that allows to get up and running with Kubernetes in no time, by completely

eliminating the need to install, manage, and operate your own Kubernetes clusters. [11].

Currently, Kubernetes supports only manual scaling or reactive autoscaling [12].

Search for articles on the implementation of proactive scaling for Kubernetes gave no results.

This paper presents a method of creating a proactive scaling system for the

Kubernetes. The efficiency of the proposed proactive scaling will be measured and compared

to the standard reactive method. The average response time of a scalable service will be

measured and used as a performance metric.

Mathematical model for proactive scaling

To implement a proactive scaling system the workload prediction method is required.

Methods to predict time series from statistics are well suited: Exponential Smoothing

(ES) and Double Exponential Smoothing (DES). DES method is used for forecasting in

proactive autoscaling in [13, 14] and it showed its effectiveness. The time series may have the

following characteristics: trend and seasonality. The task of autoscaling related to the

application workload trend. Seasonality not covered in this paper.

In the ES method, the prediction of the following time series values performed using

the formula [15]:

 (1)

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 33

where t - forecast period,

 - Forecasted value,

 - Previous forecasted value,

 - Actual value for the previous period,

 - Data smoothing factor [0, 1].

Simple exponential smoothing does not do well when there is a trend in the data,

which is inconvenient [16]. In such situations better to use DES method, which is the

recursive application of an exponential filter twice. DES method takes into account the trend

of the time series and has two formulas [17]:

 (2)

 (3)

where t - forecast period,

 - Data smoothing factor [0, 1],

 - Trend smoothing factor [0, 1],

b - Trend in moment t,

s - Prediction in moment t

 - Actual value for the previous period.

To forecast beyond xt:

 (4)

Both forecasting methods (ES, DES) used in this paper.

Proactive automatic up-scaling for Kubernetes

Proposed proactive scaling system parts are:

 Kubernetes cluster

 Time series database

 Scaler service

The proactive scaling system architecture shown in Fig. 3.

Figure 3. Proactive Scaling System

Architecture for Kubernetes

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 34

A pod is the smallest entity in a Kubernetes, and it is a one Docker container usually.

In that case, it is a containerized target application, which will be scaled.

Each Kubernetes pod writes data about CPU workload to the time series database during

a periodic task. The scaling service also has a periodic task that performs the following logic:

1. Take the last N records in the database for each pod.

2. Predict the workload using ES/DES method and data from the database.

3. Scale if mean predicted workload is more than a threshold.

Proactive scaling system for Kubernetes implemented using the Java programming

language and Spring Framework 5. Database InfluxDB chosen for storing time series. All

source code is available on GitHub [18]. Scaler settings are:

 The interval for recording CPU load data for pods is 10 seconds.

 The interval of the periodic scaling task is 30 seconds.

 Prediction time is 1 minute.

 Prediction based on workload records for the last 2 minutes.

 Scaling threshold is 80%

Experiments

Experiments performed using Minikube, an application for running the Kubernetes

cluster on a single host [19]. It runs using a virtual machine called VirtualBox 5. Virtual

machine settings are two CPU x 2.0 GHz, 4 GB RAM.

JMeter 5.0 is a tool to load test functional behavior and measure performance

developed by the Apache Software Foundation [20]. It used to test application performance

during different scenarios.

Each experiment repeated 5 times, and average results are present in tables.

Experiments are modeling increase of application workload. The first experiment is modeling

smooth increasing of a workload; the second is about rapid increasing.

In both experiments is equals to 0.75 in ES and DES methods, is equals to 0.5.

1. Experiment #1: Small trend

In this experiment, the workload is increasing slowly.

 Experiment time: 10 min 30 sec.

 The number of requests per second: 4-125.

 The maximum number of pods: 3.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 35

Table 1

Comparison of the results of experiment №1

Parameter Reactive Proactive (ES) Proactive (DES)

Requests processed 32429 32445 (+0.05%) 32275 (-0.48%)

Average request time 79.33 76.67 (-3.36%) 70.33 (-11.34%)

Median request time 37.67 31.67 (-15.93%) 31.67 (-15.93%)

Throughput (r/s) 51.47 51.50 (+0.05%) 51.23 (-0.47%)

A proactive approach to scaling can improve the average response time by 11.34% in

a load scenario with a small trend. DES again is more efficient than the default for Kubernetes

reactive approach and the proactive scaling using ES.

2. Experiment #2: Large trend

In this experiment, the workload is increasing rapidly.

 Experiment time: 7 min 30 sec.

 The number of requests per second: 10-100.

 The maximum number of pods: 3.

A proactive scaling could improve the average response time up to 14.75% in a high-

trend scenario. Processed request count, median request time and throughput are a little bit

better with DES method.

Table 2

Comparison of the results of experiment №2

Parameter Reac

tive

Proactive (ES) Proactive (DES)

Requests

processed

2193

7

22559

(+2.83%)

23054 (+5.09%)

Average request

time

61.0

0

52.00 (-

14.75%)

52.00 (-14.75%)

Median request

time

28.3

3

23.67 (-

16.47%)

26.33 (-7.06%)

Throughput (r/s) 48.7

4

50.13

(+2.83%)

51.23 (+4.36%)

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 36

Conclusion

The experiment performed by two scenarios: with small (4.1) and large (4.2) trends. In

each scenario experiment first performed with reactive autoscaling, then with proactive

autoscaling using the ES model of time series analysis, and then with proactive autoscaling

using DES model. By comparing results from various scenarios and prediction models, we

can conclude that workload forecasting minimizes the average response time of application.

There is also noticeable that the DES model is more efficient than the ES model in both

scenarios. The reason is that the DES method takes into account the trend of the time series.

Also regarding experiments, we can make the next conclusions:

1. Reactive scaling is more efficient in scenarios with a small workload trend. The

reason is that smooth increasing of workload makes possible for proactive autoscaler to work

on time.

2. Proactive scaling is more efficient in the scenarios with a rapid workload increase.

Directions for future research:

 Search for parameter values and for DES, to archive the best average response time.

 Comparison of the effectiveness of different methods for predicting the workload.

 Hybrid scaling system (reactive and proactive) for Kubernetes.

 Proactive scaling that will take into account communications between

microservices.

 Technologically fit solution into Kubernetes infrastructure for easy plugging it as

Kubernetes extension.

 Technologically add support for Prometheus timeseries database which is widely

used to collect metrics and monitor microservices.

REFERENCES

1. Armbrust, M. Fox, A, Griffith, R. Joseph, D. A. Katz, R. Konwinski Above the

clouds / A Berkeley View of cloud computing. University of California, Berkeley, February

2009, pp. 6-7.

2. Armbrust, M. Fox, A, Griffith, R. Joseph, D. A. Katz, R. Konwinski Above the

clouds / A Berkeley View of cloud computing. University of California, Berkeley, February

2009, pp. 10-12.

3. Tighe, Michael & Bauer, Michael Integrating Cloud Application Autoscaling with

Dynamic VM Allocation / in Proceedings of 14th IEEE/IFIP Network Operations and Management

Symposium: Management in a Software Defined World, Krakow, Poland, May 2014.

4. Kee Kim, Wei Wang, Yanjun Qi, and Marty Humphrey Empirical Evaluation of

Workload Forecasting Techniques for Predictive Cloud Resource Scaling / in Proceedings of 9th

International Conference on Cloud Computing, San Francisco, CA, USA, June 2016, pp 8-9.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 37

5. N. Roy, A. Dubey and A. Gokhale Efficient Autoscaling in the Cloud Using

Predictive Models for Workload Forecasting / in Proceedings of 4th International Conference

on Cloud Computing, Washington, DC, USA, July 2011, pp. 500-507.

6. AWS News blog, New - Predictive Scaling for EC2, Powered by Machine

Learning. [Online]. Available: https://aws.amazon.com/blogs/aws/new-predictive-scaling-

for-ec2-powered-by-machine-learning

7. Wajahat, Muhammad & Gandhi, Anshul & Karve, Alexei & Kochut, Andrzej

Using machine learning for black-box autoscaling / in Proceedings of 7th International Green

and Sustainable Computing Conference, Hangzhou, China, November 2016, pp. 1-8.

8. What is a Container? [Online]. Available: https://www.docker.com/resources/

what-container

9. David Bernstein Containers and Cloud: From LXC to Docker to Kubernetes /

IEEE Cloud Computing, Vol. 1, Issue 3, pp. 81-84, Sep. 2014.

10. Kubernetes on AWS. [Online]. Available: https://aws.amazon.com/kubernetes

11. Kubernetes Engine [Online]. Available: https://cloud.google.com/kubernetes-

engine

12. Autoscaling in Kubernetes. [Online]. Available: https://kubernetes.io/

docs/tasks/run-application/horizontal-pod-autoscale

13. Aslanpour, Mohammad Sadegh and Seyed Ebrahim Dashti Proactive Auto-

Scaling Algorithm (PASA) for Cloud Application / International Journal of Grid and High

Performance Computing, Vol. 9, Issue 3, pp. 1-16, 2017.

14. K. Kanagala and K. Sekaran An approach for dynamic scaling of resources in

enterprise cloud / in Proceedings of IEEE 5th International Conference on Cloud Computing

Technology and Science, Vol. 2, Bristol, UK, Dec 2013, pp. 345–348.

15. Brown, Robert Goodell Smoothing Forecasting and Prediction of Discrete Time

Series / 1963, Englewood Cliffs, NJ: Prentice-Hall, USA, pp. 99-104.

16. NIST/SEMATECH e-Handbook of Statistical Methods, 6.4.3.3. Double

Exponential Smoothing [Online]. Available:

https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc433.htm

17. Brown, Robert Goodell Smoothing Forecasting and Prediction of Discrete Time

Series / 1963, Englewood Cliffs, NJ: Prentice-Hall, USA, pp. 128-132.

18. Proactive autoscaler for Kubernetes [Online]. Available:

https://github.com/dimamon/proactive-scaler

19. Minikube project on GitHub [Online]. Available:

https://github.com/kubernetes/minikube

20. Apache JMeter [Online]. Available: https://jmeter.apache.org

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (42) 2023

 ISSN 1560-8956 38

https://www.docker.com/resources/
https://kubernetes.io/

	Albrekht_Pysarenko_2++
	Albrekht_Pysarenko++
	Article, Bezliudnyi Y.++
	Dmitriy_Gutman,_Olena_Syrota++
	Drahan_Pysarenko++
	Gavrylenko О., Zhurakovska О., Kogan А., Bogdanova N., Khomenko О.++
	Kostiantyn Hazin, Inna V. Stetsenko++
	Mykhailenko V., Chunyak J., Geraskin O., Kovalevskiy M.++
	O. Rolik, O. Amons, K. Ulianytska, M. Khmeliuk, A. Kovalska, A. Hrytsenko, K. Palii++
	Oliinyk V., Matviichuk I.++
	Palii V., Zhurakovska O.++
	Polshakova О., Zhuravlov D.++
	Smolij V., Smolij N., Lisovychenko O.++
	Y. Timoshin, M. Shevchenko++
	Бернатович А., Стеценко І.++
	Дуда В.О., Ролік О.І.++
	Іванов А.І., Онищенко В.В.++
	Нестеренко К., Стеценко І.++
	Новиков Д.М., Полторак В.П.++
	Павлов О., Халус О., Місюра О., Мельников О., Медведєв М.++
	Рибачук, С.Д. Жевакін++
	Чимшир В.І., Теленик С.Ф., Ролік О.І., Жаріков Е.В.++
	ЗМІСТ
	УКР_УДК
	АНГЛ_УДК
	Про автора

 HistoryItem_V1
 AddNumbers

 Range: From page 1 to page 263; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 70.87 points, vertical 55.28 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20230502112118

 1
 1

 BR

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1024
 228
 0
 1
 R0
 12.0000

 Odd
 1
 SubDoc
 263

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 55.2756

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 0
 263
 262
 77c2dfb0-c899-4196-8713-8fb9847fc83c
 132

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 1 to page 263; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 70.87 points, vertical 55.28 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20230502112129

 1
 1

 BL

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1024
 228
 0
 1
 R0
 12.0000

 Even
 1
 SubDoc
 263

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 55.2756

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 1
 263
 261
 2f2f466d-2464-423c-8ada-ca0fa55515a2
 131

 1

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 2
 Page size: same as current

 D:20230502112401

 Blanks
 Always
 2
 1

 D:20180918122136
 841.8898
 a4
 Blank
 595.2756

 70
 Tall
 818
 268
 0
 1
 1

 CurrentAVDoc

 SameAsCur
 BeforeCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 0
 2

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 261 to page 263; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 70.87 points, vertical 55.28 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20230503145117

 1
 1

 BR

 1
 1
 1
 0
 0
 261
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1024
 228
 0
 1
 R0
 12.0000

 Odd
 261
 SubDoc
 263

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 55.2756

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 260
 264
 262
 25bc8610-095e-4250-ab3a-6553b44a297e
 2

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 261 to page 263; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 70.87 points, vertical 55.28 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20230503145126

 1
 1

 BL

 1
 1
 1
 0
 0
 261
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1024
 228

 0
 1
 R0
 12.0000

 Even
 261
 SubDoc
 263

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 55.2756

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 261
 264
 261
 7038c4c8-4794-45be-bbc9-86c9d9558cf5
 1

 1

 HistoryList_V1
 qi2base

