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LIGHTWEIGHT AGENT-BASED GAME AI ARCHITECTURE 

Abstract: The article is devoted to the research game Artificial Intelligence (AI) and 

architectural solutions for its development. Game AI is one of the most complicated parts of 

game development, and it needs good tools to reduce complexity and speed up the 

development. However, there is a lack of lightweight solutions, which can be easily 

implemented, providing the desired flexibility and reduced complexity. A comparison of 

game and academic AI is presented, and it is also explained why standard academic AI 

techniques can’t be broadly applied to game development. Considerable attention is paid to 

examine existing alternatives such as GAIA, SOAR and AI.Implant, their advantages and 

disadvantages. The proposed solution for a lightweight agent-based game АІ architecture is 

described in detail with examples. In addition, the solution provides a space for improvement 

and extension, which can be useful for more complicated cases than described in the article. 
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Introduction 

Nowadays the gaming industry is the largest category in the entertainment industry. 

This year, the gaming industry is expected to be worth more than $170 billion in global 

revenues, five times greater than global movie box office revenues [1]. There is a growing 

tendency of releasing new games on Steam, which can be seen on the graphs. In 2022 the 

number reached 12879 releases (Fig.1). That is 35.3 games a day in only one digital store for 

only personal computers. 

Figure 1. Steam Game Releases 
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Problem tasks 

It is very important to have reliable instruments, robust and flexible code base to 

iterate more quickly, speed up the development process and reduce the number of bugs in this 

rapidly developing and high grossing media[3]. Game artificial intelligence (AI) often is one 

of the most complicated parts of the code base, so by standardizing its architecture and 

dividing it into smaller more manageable pieces we reduce its complexity and solve part of 

this problem. 

There are many game AI architectures which are either very hard to implement, or 

provide not enough context to fully solve the problem and focus only on one or two aspects of 

the SENSE-THINK-ACT AI loop. And this research will try to fill in this niche of lightweight 

solutions.  

In this research only agent-based AI will be considered. It is a bottom up design where 

each agent has its own AI [4]. 

Game AI and academic AI 

First, we need to set the difference between academic AI and game AI. The goals of 

game AI differ from the goals of academic AI. The main goal of academic AI is to design and 

develop optimal agents which will try to reach the most optimal solution for the problem and 

have large-scale autonomy. Whereas the game AI goal is to entertain, seem intelligent to the 

player and have a fast iterative process. The illusion of intelligence is more important than the 

real level of intelligence. Game AI needs some degree of autonomy, to make every interaction 

feel natural, but also needs some degree of authorial control to direct its actions to deliver the 

intended player experience [5]. 

The key metrics of game AI are more subjective because the main goal of games is to 

deliver desired experience to the end player. It is very subjective and can not be measured by 

classic AI metrics such as precision, accuracy, F1 score and others. The main metric is player 

engagement, which can be measured only through manual play testing. And because of this 

the only way to fine-tune the AI is to iterate over and over until it is engaging and delivers the 

desired experience, not necessarily fun [6]. 

That is why the techniques for game AI development differ. Learning algorithms such 

as Machine learning (ML) and Reinforcement learning (RL) are very rare because they need a 

lot of data to perform better results and, in most cases,  they reach for optimal solutions which 

are not necessary. They are very hard to tune, too complex for a desired task and take too 

much time. In game AI development heuristics and ad hoc solutions are very common. 

Because you do not need optimal solutions, and you need a high performance and high speed 

of development to iterate and fine-tune the AI. The difference between Academic AI and 

game AI is represented in Table 1. 
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Table 1. 

The difference between Academic AI and game AI  

 Academic AI Game AI 

Goals Optimal and intelligent 

agents 

Entertaining, seemingly intelligent agents 

which are fast to develop and iterate over 

Key metrics Precision, accuracy, 

execution speed, 

objective metrics 

Iteration speed, perceived intelligence of 

agents, player engagement, execution speed, 

subjective metrics  

Common 

techniques 

ML, RL, non-learning 

algorithms 

Heuristics, ad-hoc solutions(hacks), non-

learning algorithms 

 

Existing alternatives 

GAIA. Game AI Architecture [5, 8]. Written by Kevin Dill and Lockheed Martin 

Advanced Simulation Center (Fig.2). 

 

Figure 2. GAIA Architecture 

The following advantages could be mentioned: 

- very flexible, 

- allows to isolate complexity, 

- provides great reusability of its components, 

- easy to scale, 

- data driven, 
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- makes easier AI configuration,  

- integration with different game and simulation engines. 

The most noticeable disadvantages are: 

- difficulty and time-consuming to implement even the most basic version 

- too complicated for small to medium projects with simple agents 

In summary, fits best for medium to large projects and medium to big development 

teams with highly competent staff. 

SOAR. Maintained and developed by University of Michigan [9, 10]. 

 

Figure 3. Structure of Soar memories, processing  

modules, learning modules and their connections 

SOAR has such advantages: 

- flexible, 

- adapts to environment, 

- can be used to combine real-time decision-making, planning, natural language 

understanding, metacognition, theory of mind, mental imagery, and multiple forms of 

learning, 

- frequently updated. 
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But can nott be broadly used in game development because of these disadvantages: 

- enormous complexity 

- has learning under the hood 

- more of an academic, than game AI 

In summary, it is a powerful tool for academic AI, but hard to adapt it to game AI. 

AI.Implant. Made and maintained by Presagis [11]. 

 

Figure 4. Scheme of AI.Implant 

Advantages of AI.Implant are: 

- integrations with different engines and platforms 

- plugins for development software 

- visual tools 

- crowd behaviour 

- extensible api 

The AI.Implant also has some crucial disadvantages: 

- outdated and has no updates for several years 

- has barely any documentation 

In summary, used to be a good tool, but now not lacks support to be competitive. 

Agent-based game AI Architecture 

Most game engines use the component approach. So the most universal way to 

implement AI is to make a distinct component for it. We offer an architectural approach of an 

AI Component consisting of 3 layers: Perception, Decision Making, Action Execution (Fig. 

5). They follow the AI principle SENSE-THINK-ACT. 
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Figure 5. Data flow in AI Component 

The first layer, Perception consists of 3 components: Sensors, Perceptor and a 

Blackboard. Sensors gather information about the world, namely all the external and internal 

state that influences decision making. Sensors can be direct calculations of the environment or 

indirect. Direct calculations are raycasts, measuring distance to target, pathfinding, etc. 

Indirect is looking up to the global Blackboard and retrieve data from there or other available 

source. Also sensors can be implemented in two ways: polling and events. During polling 

sensors directly query the environment to get data. Events on the other hand are triggered by 

changes in the environment. 

The next element is optional. With simpler implementations Sensors can write straight 

to the Blackboard. Perceptor modifies information gathered through sensors, depending on an 

agent, without need to change sensors themselves and writes results to the Blackboard. So 

sensors can be universal to all agents, but information gathered from them can be tweaked 

depending on the agent and circumstances. 

Blackboard is a connection between Perceptor and Decision Making to decouple them. 

Also, it can be used as a memory of our agent if we are no longer getting fresh data from 

corresponding sensors and Perceptor. If the desired agent is simple, it is enough to use a 

hashtable under the hood and simply put, read data from it. 

However, to use Blackboard as a more complicated system we must wrap our data in a 

container — BlackboardData, which stores additional metadata about information received 

from Perception such as time of retrieval, source of information, etc. More complicated 

Blackboards can be used as a memory system for our agent, emulation of fuzzy information 

and fuzzy decision-making if we can not be sure of the given information. 

Decision-making has just one element – decision-making  algorithm. It can vary in 

complexity: from something simple as a rule-based system with couple if-else to complicated 

hierarchical reasoning systems combining different decision making algorithms. However, 
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regardless of the implementation the interface must be the same. It must return an Action, 

which can be later used by an Action Execution layer. 

Action is a piece of game logic, which represents the result of a decision process. For 

Behavior Tree these are leaf nodes, for Goal Oriented Action Planning — actions, for 

Hierarchical Task Network — tasks, for Finite State Machine — logic for a state and logic for 

a transition [8]. Actions also can be compound and sequential. Compound action has sub 

actions that execute simultaneously. Sequential actions are more of a scripted behavior, all 

sub actions are executed in sequence.  

Action execution consists of Action Manager. Action Manager is a scheduler for 

Actions, which makes Action Execution centralized and easy to manage because all actions, 

which agent performs are in one place. It runs the active action, handles the queue of next 

actions and provides feedback to Decision Making: whether the action is active, finished, or 

something else. It can be implemented using priority queues, interruptive, expiring actions 

and many other techniques. 

Many common techniques for game AI fit in the described architecture: hierarchical 

reasoning, option stacks, intelligent objects [7] and considerations [5, 8]. 

Use case 

As an example, we can consider two AI agents for a shooter game: a sniper and a regular 

infantryman. This example will demonstrate every part of an architecture and its flexibility. 

Both agents can see and detect enemies (sniper detects enemies faster), cover points, 

and can be blinded by a flashbang (sniper recovers from a flashbang faster). They can decide 

what action to do next based on this information (the sniper is smarter): take cover, shoot 

enemies or just stand still. Let’s break it down into layers we discussed earlier. 

Perception Layer. The agents have 2 sensors: a vision sensor to see enemies through 

raycasts and a well-being sensor which handles buffs, debuffs and health. Sensors are identical. 

Information from sensors goes to the Perceptor. Both agents can detect enemies if they are too 

long in the agents' vision area. The threshold detection for a sniper is smaller, so he can detect 

enemies faster. After the detection, Perceptor writes information about enemies to the Blackboard 

to decide what to do. If Perceptor recognizes a flashbang debuff from a well-being sensor, for a 

period of time, Perceptor doesn’t write any information to the Blackboard, which comes from the 

vision sensor. The period of blindness is shorter for a sniper. When Blackboard stops receiving 

data from Perceptor, it still holds previous data about enemies and covers. Blackboard data has 

time stamps for each entry, so can be used as a memory tool.  

Decision making layer reads data from Blackboard: enemies, cover points, well-being. 

An infantryman can have FSM under the hood and just stand still, because he can’t see and he 

can’t decide what to do. But a smarter sniper can use a Blackboard as a memory. For example 
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he can have a HTN under the hood, and when flashed decide to take the closest cover by 

memory, which protects from the last known location of enemies. Actions have priority and 

can be interruptive. 

The Action Manager receives actions from the decision-making layer, queues them. 

For example our sniper was flashed, decided to go to cover, because he can not continue 

shooting. Going to cover queues up. It is an important action, so it immediately replaces the 

current action and starts executing. 

Conclusion 

The proposed agent-based game AI architecture covers a whole SENSE-THINK-ACT 

loop and helps to decouple code and make it more flexible and reusable. The architecture is 

also lightweight. It can be easily implemented with little effort, focusing on implementation of 

game logic. Also, architecture itself can be broadly interpreted because it provides a lot of 

flexibility with few constraints, yet helps to decouple and organize code. For example GAIA 

loosely fits in our model of architecture. Sensors are considerations, reasoners are a 

complicated decision making algorithm. But it also offers a more specific solution for game 

AI architecture, leaving less space for misinterpretation and bad architectural decisions and 

heavily enforcing code reusability. 

The proposed architecture is a solid foundation of game AI. For a simple AI these 

loose guidelines would be more than enough to handle code base. For more complex cases it 

can become a good temporary solution. Complex architectures like GAIA can be built atop 

our solution. Their high cost implementations can be partitioned in time by gradually 

transitioning from our non-constrained easy-to-implement solution to more sophisticated and 

complex. So it can greatly benefit projects of all sizes. 
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