

UDC 004.05

O. Linevych, O. Lisovychenko

SOFTWARE EVOLUTION FROM SYSTEM PERSPECTIVE

Abstract: Currently, software evolution takes an unpredictable amount of time. The

purpose of the article is to describe the study of 7 popular and 1 new development method and

their impact on the rate of evolution. The new method is the most effective, as it collects the

most information on the connections between data and processes.

Keywords: software, evolution, systems theory, development, task.

Introduction

One of the longest and most high-cost phases of the software lifespan is its evolution.

It takes 85-90% of the software budget [1]. There are dozens of development methods to

speed up evolution and to lower the cost. The methods helped to some degree by speeding up

use case translation to a code but according to CHAOS company reports, for the last 10 years

the IT market has stagnated, around 20% of the software fails each year and 50% is

challenged because it’s still hard to evolve [2, 3].

Problem Formulation

To analyze the efficiency of the widespread development methods which speed up

evolution, to deduce the causes of the slow system evolution, and to compare the widespread

method efficiency to the New Universal method.

Problem Solutions

Amongst the widespread methods that were analyzed are categorization[4], DDD [5],

TDD [6], BDD [7], API Design-First[8], and patterns.

These methods are usually used to extract different types of domain information from

a use case.

Were implemented 35-40 use cases per system.

The extracted information is used to evolve a code system.

Evolution time depends on the amount and quality of the extracted information. The

methods extracted such information about the domain.

Thus, were conducted experiments for 25 software systems (during the evolution

phase) from 10 domains: banking, telecom, e-commerce, healthcare, prediction,

recommendation, design, government land, real estate, and accounting.

The experiment course was:

- to document a planned time to implement a use case

- to extract information from a use case by a development method

©© O. Linevych, O. Lisovychenko

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (44) 2024

103

- to document the extracted information

- to evolve a system using the information

- to document actual evolution time.

Table 1. Domain Information Categories

Name Categories

Data 1. data specifications

2. data abstractions

3. data connections inside the data (data system)

4. data connections with the outside world (system context)

Process 1. process specifications

2. process abstractions

3. process connections inside the process (process system)

4. process connections outside the process(system context)

Abstraction Method

There are 3 categorisation subtypes:

1. categorization

2. prototyping;

3. concept clustering.

The method is naturally used by the analysts and developers. The sense is to name,

and find common properties of the data and processes, then translate them to the code.

These methods are used in combination with the next 5 methods.

When use cases were implemented using the only Abstraction method, then the

software evolution speed had such indicators:

Table 2. Abstraction Method

DDD Method

When use cases were implemented using the DDD method, the software evolution

speed had such indicators:

The method helped to extract data specification, abstraction, and inside connection

information but didn’t extract data outside and process inside/outside connections.

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (44) 2024

104

Table 3. DDD Method

TDD+BDD, API Design-First Methods

TDD is usually reinforced with BDD and 90% of the systems were used together. An

exception was a start-up sports e-commerce system which used use cases and tests.

When use cases were implemented using the TDD and BDD methods, the software

evolution speed had such indicators(API Design-First provided almost identical results

because has a similar idea to identify use case aims):

Table 4. TDD+BDD or API Design-First Methods

Pattern Method

This method helped to extract all data/process specifications, abstractions, and

data/process inside connections if a pattern could be used. The pattern usage is limited to

specific cases. There are 3 widespread pattern types: design[8], enterprise[9], and

microservice[10]. The time to implement use cases using the pattern:

Table 5. Pattern Method

Hybrid Method

The hybrid method united DDD, TDD, BDD, and pattern methods.

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (44) 2024

105

Table 6. Hybrid Method

RUP Method

When use cases were implemented using the only RUP method, then the software

evolution speed had such indicators:

Table 7. RUP Method

New Universal Method

This method is built on general system theory and evolutional software lifecycle

described by R. Riordan[12], RDD, DDD, modified TDD, and categorization methods.

The method can be used for any domain which can be described using the general

system theory and, therefore is named as universal. The method is distinguished from other

methods because of the system's perspective on a use case as a system of interrelated data and

process subsystems.

The sense is to translate a use case by sentence analysis and finding of data/process

specifications, then data/process analysis of inside system structure, and then outside.

When use cases were implemented using the New Universal method, then the software

evolution speed had such indicators.

Solution Analysis

The Abstraction method is one of the least stable: with time the ability to evolve the

system degraded steeply because it wasn’t possible to predict how much time would be taken

for a new use case implementation. Every use case was implemented with a different set of

data/process abstractions/specifications depending on the developer's perspective and later

(very)heavy tasks took more time(from instead 10 it took 30) to introduce changes.

The DDD method helped to extract the same data and put it in the unified domain

(terminology)form which was implemented by the developers. It sped up the next evolution

cases instead of an average of 3.5 days it took 2 days for the medium tasks and hard tasks

implementation took more often 5 days.

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (44) 2024

106

Fig. 1. Activity Diagram of New Universal Method

Table 8. New Universal Method

However, DDD didn’t extract the data and process outside connections. This lack of

information made the system non-integral with the existing system and complicated its

structure. The structure complication leads to the fast degradation of the future evolution

possibilities.

The TDD+BDD methods extracted the same data and process information as the

Abstraction method and didn’t unify it according to the domain, but the evolution was fast at

the beginning due to BDD use case descriptions and TDD aim orientation.

However, software evolution degraded the same because lacked the same data. Thus,

heavy tasks were made slower with each new change and could be done in unplanned 40

days, not 10.

The Pattern method helped to extract more information, than DDD, TDD+BDD but it

was limited by the number of limited situations where the patterns are efficient. The pattern

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (44) 2024

107

method is one of the fastest methods to extract info and provides the most predictable system

evolution because of the detailed documentation of previous experience.

The hybrid methods provided faster evolution and helped to extract more data, than

previous methods, though without the existing system connection rules as other methods. The

hybrid method helped to find data and process information in such a number of cases:

Fig. 2. Hybrid Method Data Info

Fig. 3. Hybrid Method Extracted Process Info

The Hybrid Method provided almost identical results compared to the RUP method

but the RUP method took more time to develop tasks at the beginning but degraded slower to

an extent when very heavy tasks maximum took 25 days instead of 34.

The main problem is that even if combine all 5 widespread methods into the Hybrid

method, it doesn’t help to extract data and process outside connections i.e. it’s not clear how

to organize use case data and process abstractions that they could be built into the existing

systems and predictably evolved in the future. The same if with RUP and API First methods.

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (44) 2024

108

To build a predictable system there’s a need to know system limitations of evolutions

and rules. The New Universal method fulfils these requirements for medium tasks by

minimizing task implementation to 9 hours and for very hard tasks that were implemented

with a maximum of 18 days which is faster, than the Hybrid method which takes 22 days.

Also, the method helps to minimize simple and hard task implementation to the planned time.

The New Universal method can find data/process connections because of general

system theory [13] that clarifies domain structure including outside connections and the rules

according to which social, biological, chemical, and other systems are automated by the

software.

Conclusions

There’s a need for a method like the New Universal method which helps to extract and

organize domain information considering data and process abstractions, data and process

inside/outside connections.

Such a method would consider existing system rules and future domain challenges.

Such a system with naturally built-in use cases will always be in a stable intermediate form

and, thus can evolve naturally.

The natural evolution of the software is predictable because it is based on the fixed set

of rules described in the general system theory.

REFERENCES

1. Ogheneovo E.E. On the Relationship between Software Complexity and

Maintenance Costs / Journal of Computer and Communications 02(14), 2014.

2. Alves L.M. Longevity of risks in software development projects: a comparative

analysis with an academic environment. 2021.

3. Johnson J. CHAOS Report Project Outcome Results 2020. URL:

https://www.standishgroup.com/store/

4. Booch G. Object-Oriented Analysis and Design with Applications. Addison-

Wesley Professional. 2007.

5. Evans E.. Domain-Driven Design: Tackling Complexity in the Heart of

Software. Addison-Wesley Professional. 2003.

6. Beck K. Test Driven Development: By Example. Addison-Wesley Professional 2002.

7. Ferguson J. BDD in Action: Behavior-driven development for the whole

software lifecycle. Manning Publications. 2014.

8. Higginbotham J. Principles of Web API Designing. Pearson Addison-Weasley. 2021.

9. Gamma E. Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley Professional. 1994.

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (44) 2024

109

https://www.standishgroup.com/store/

10. Fowler M. Enterprise Patterns. 2002.

11. Richardson C. Microservices Patterns: With examples in Java. Manning. 2018

12. Riordan M.R. Designing effective database systems. Addison-Wesley Microsoft

Technology). 2005.

13. Ludwig Von Bertalanffy. General System Theory: Foundations, Development,

Applications. George Braziller Inc. 1969.

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1’ (44) 2024

110

	1_+2023_2 Тарасьонок англ
	2_+Automated healthcare systems’ review
	3_+embedding
	4_+Soft skill in IT students training
	5_+Stenin_Paper_In_Model 17.11.2023_new
	6_+Stenin_Pasko
	7_+Дзівідзінська_Фіногенов_Губський
	8_+Жданова_О_Г_та_ін_Задача_формування_зон
	9_+Застосування_методу_сегментації_на_основі_моделей_нейронних
	10_+Ковальчук_Польшакова_Англ
	11_+Ліневич_Лісовиченко_1
	12_+Михайленко-2024-лютий_Eng-ФІОТ-2
	13_+Статичні_алгоритми_2
	14_+Стаття_Марковський_1
	15_+Стаття_Марковський_2
	16_+СтаттяСмолій_ua2024_1
	17_+Тривимірні_нейроні_мережі_у_завданнях_кластеризації_last
	18_+Формалізація_задачі_формування_200224
	19_+Чимшир Теленик Гавриленко Жаріков - завершено
	20_+Щур_Антон_Стаття
	Зміст
	УДК УКРАЇНА
	UDC АНГЛ
	Про автора

 HistoryItem_V1
 AddNumbers

 Range: From page 1 to page 232; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 70.87 points, vertical 59.53 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20240328120711

 1
 1

 BR

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 64
 195
 0
 1
 R0
 12.0000

 Odd
 1
 SubDoc
 232

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 59.5276

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 0
 232
 230
 68c1fd5b-c4a1-4435-bede-0f0a4df1cf76
 116

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 1 to page 232; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 70.87 points, vertical 59.53 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20240328120719

 1
 1

 BL

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 64
 195
 0
 1
 R0
 12.0000

 Even
 1
 SubDoc
 232

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 59.5276

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 1
 232
 231
 c917539c-fa7f-43a3-a324-ce76a0ca0486
 116

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 2
 Page size: same as current

 D:20240329140502

 Blanks
 Always
 2
 1

 D:20180918122136
 841.8898
 a4
 Blank
 595.2756

 70
 Tall
 746
 172
 0
 1
 1

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 1
 2

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 230 to page 234; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 70.87 points, vertical 59.53 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20240329140718

 1
 1

 BL

 1
 1
 1
 0
 0
 230
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1114
 197
 0
 1
 R0
 12.0000

 Even
 230
 SubDoc
 234

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 59.5276

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 229
 234
 233
 8abeaf51-0f16-47c6-9b00-c07271088113
 3

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 230 to page 234; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 70.87 points, vertical 59.53 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20240329140723

 1
 1

 BR

 1
 1
 1
 0
 0
 230
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1114
 197

 0
 1
 R0
 12.0000

 Odd
 230
 SubDoc
 234

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 59.5276

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 230
 234
 232
 7c39e9d9-41cf-4606-887f-490b36ab2f5b
 2

 1

 HistoryList_V1
 qi2base

