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INTELLIGENT CONTROL SYSTEM WITH REINFORCEMENT  

LEARNING FOR SOLVING VIDEO GAME TASKS 

Abstract: This paper describes the development of a way to represent the state and 

build appropriate deep learning models to effectively solve reinforcement learning video 

game tasks. It has been demonstrated in the Battle City video game environment that careful 

design of the state functions can produce much better results without changes to the 

reinforcement learning algorithm, significantly speed up learning, and enable the agent to 

generalize and solve previously unknown levels. The agent was trained for 200 million 

epochs. Further training did not improve results. Final results reach 75% win rate in the first 

level of Battle City. In most of the 25% of games lost, the agent fails because it chooses the 

wrong path to pursue an enemy that is closer to the base and therefore slower. The reason for 

this is the limitation of cartographic information. To further improve performance and 

possibly achieve 100% win rate, it is recommended to find a way to effectively include full 

information about walls and other map objects. The developed method can be used to 

improve performance in real applications. 

Keywords: reinforcement learning, deep learning, state representation, neural 

network, Battle City. 

Introduction 

Reinforcement Learning (RL) is a learning approach in which an artificial 

intelligence (AI) agent interacts with its surrounding environment by trial-and-error method 

and learns an optimal behavioural strategy based on the reward signals received from 

previous interactions [1,2]. Many studies in the RL field focus on the algorithm itself, 

foregoing state representation choice, while utilizing ones that don’t require much 

engineering, such as RAM or pixels [3]. While this approach needs less time to implement, it 

limits the agent’s performance. With each new level or unique situation in an environment, it 

needs more time to learn and also has to remember previous interactions. It’s highly 

challenging to generalize on frames to previously unseen ones, so the agent essentially learns 

from scratch each new part.  

Another important point is that most games in the Atari benchmark have no local 

optimums. For example, in Breakout, as long as the agent does not miss the ball, it has the 

opportunity to win the level. There is no way to make a play that produces an immediate 

reward but limits the agent’s ability to successfully finish an episode. And other Atari games 

are similar in this regard.  
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To address the above-mentioned problems, we demonstrate our ideas in the Battle 

City environment. We aim to create state representation, build models, and choose an 

appropriate reinforcement learning algorithm that would allow the agent not only to get a 

higher score than some baseline but also to win a significant number of episodes.  

 

Figure 1. First level of Battle City 

To win in the Battle City environment, the agent has to destroy 20 enemy tanks while 

keeping his base safe. This problem introduces a possible local optimum when the agent 

only focuses on getting rewards through enemy tanks without base defence. 

Another important aspect of the chosen environment is that the agent has a lot of 

possible strategies that can lead to different long-term states, for instance, being in different 

parts of the map hundreds of steps later, as opposed to Atari games where decisions usually 

impact only the next few dozens of frames. Hence, we show the effectiveness of our ideas in 

this environment. 

 

 

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (45) 2024 

 ISSN 1560-8956 35



Related works 

There are several works that demonstrate improvements in reinforcement learning 

methods on the Atari benchmark: A3C [4], PPO [5], SAC [6], etc. They all used pixels as 

state representation and didn’t achieve completion of the games, which is definitely possible 

for humans and should be pursued.  

Two prominent researches that created agents able to compete with top players are 

Open AI Five [7] and AlphaStar [8]. In both of them, handcrafted state features and neural 

networks are used. However, state representation and model construction are not the focus of 

the research, and corresponding decisions are only discussed briefly. Also, these games are 

rather complex and require clusters of computers to train the mentioned agents; thus, the 

results cannot be easily replicated by a casual researcher. 

There is a recent study that focuses on different state representation for Atari games: 

Object-Centric Atari [9]. Such representation, however, doesn’t include all the needed 

information, such as mazes in Pacman, which results in the inability of agent to solve certain 

environments. 

Reinforcement learning algorithm 

Our agent uses IMPALA (Importance Weighted Actor-Learner Architecture), which 

provides one of the best utilization of resources on a single machine. Learning is happening 

on actor-critic architecture with the off-policy V-trace correction method [10]. Generating 

transitions in the Battle City environment is computationally intensive compared to Atari 

games, so an off-policy algorithm, which can learn on the same transition multiple times, is 

preferred over an on-policy one.  

State representation 

The Battle City game consists of the following elements: map objects, i.e., walls, 

tanks, bullets, bonuses, base and information about lives and enemy tanks left.  

Let’s start with the main entities, since decisions should be made mostly depending 

on them. They include the player's tank, enemy tanks, bullets, base and bonuses. There are 

two possible ways to represent them. Either make a grid and position them on it or assemble 

them in a list. The first way, which is not much different from pixels, would introduce the 

above-mentioned problems, and considering that entities are sparse, we would waste a lot of 

space in the grid. Hence, we went with the second variant, list. Entities don’t have a specific 

order, so a list is considered unordered. Each entity in a list includes whole information 

about the entity; more about that is in Table 1.  

As for map objects, we could represent them the same way as main entities, but the 

only non-default fields would be type and position. Also, while there are less than 20 main 

entities at a time, the wall count can exceed two hundred, so storing them the same way as 

entities is suboptimal. We considered placing such objects in a grid with only their type, as 
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coordinates would be accounted for by position in the grid, but this representation proposes 

some challenges, mainly figuring out the correlation between the grid and the main objects. 

In respect to that, we decided to reduce information about map. These objects mainly 

determine how agent should path in the short term, and having knowledge about the 

presence or absence of a wall far from the agent shall not have many benefits. So, we place 

objects in a grid, but only consider a small part of it around the agent. This way, the agent 

won’t be flooded with redundant information but will still have the ability to correctly 

navigate. The correlation problem between grid and entities doesn’t arise as well since such 

a subgrid is always centred around the player's tank. 

Table 1 

Entity information 

FIELD DESCRIPTION 

TYPE Type of the entity. Tank, bullet, base or bonus. 

TEAM Entity team. Ally, enemy or neutral. 

DIRECTION Direction of the entity. Up, left, down, right or none. 

POSITION X and Y coordinates of the entity.  

LIVES / ARMOR Lives of the allied tank or amor for the enemy tank. For other entity 

types equals 1. 

SPEED Current speed of the entity. 

TIME LEFT Remaining bonus lifetime. For other entity types equals 0. 

 

Finally, there is left general information that is displayed on the side of the game 

window: the number of enemy tanks and the player's lives. Since we considered lives in tank 

entity, we have a single number in this section, and we are fine with that, there is no need to 

change it to any other representation. 

Reward function 

The goal of the game is to destroy 20 enemy tanks while defending the base. There is 

an in-game score, but it is inconsistent; the player receives different amounts of points for 

different tanks and gets a lot of them for bonus collection, while in most cases it does not 

bring the agent closer to the goal. So, we simply give a reward 1 per enemy tank's 

destruction. Other reward functions were considered, such as negative reward for losing base 

or lives, but they either didn’t affect convergence or affected it negatively (the way to make 

this and consecutive findings is described in the Experiments section).  

Action space 

At any time, the player can move in any of four directions or stand still. Also, he can 

shoot or not shoot. Thus, we have actions of two types. If we combined them, we would 

have a total of 10 actions. But such a method would screw up entropy since agent could 
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converge on some simple behaviour, such as slowly going ahead and shooting. Entropy 

regulation should prevent that, but with action combinations, agent can have low entropy 

while doing so by simply alternating between 4 possible actions. Hence, we reduced action 

space to only 5 actions: going in 4 directions or shooting. It does limit agent in some way, 

but with a possible 20 actions per second, this is not an issue. 

Model 

Using a much richer class of function approximations, such as neural network 

approximation, where we directly use the states without requiring an explicit function 

specification [12, 13]. It can represent complicated nonlinear functions using different 

activation functions. ANN is one of the best choices for nonlinear function approximation, 

and in the last few years, deep neural networks (DNN) are becoming popular. The DNN is 

quite successful for problems such as speech recognition, object detection, and Natural 

Language Processing (NLP) [13-16]. DNN can automatically extract the low-dimensional 

features from high-dimensional input data like audio and pictures [17-23]. Deep 

reinforcement learning (DRL) is a powerful method to introduce efficient function 

approximation and enable RL to solve some of the most complex learning problems, such as 

playing video games directly from image pixels. Through a trial-and-error approach, DRL 

can create efficient autonomous RL agents that can learn optimal policies for complex real-

world problems. It can also be implemented in works to estimate optimal policies directly 

from input images from the environment. 

IMPALA is based on actor-critic architecture and requires two networks: policy and 

state-value. We went with the exact structure for both, the only difference being in the output 

layer, but it's worth noting that the policy network can be made simpler than the state-value 

one. This is explained by the fact that policy may represent simple behaviour, in our case, 

something like moving to the nearest tank and shooting when close, while the state-value 

function needs to output the possible reward of the corresponding policy with regard to the 

discount factor. In the latter case, much more precision is required. 

Network types 

There are three parts in our state representation: a list of entities, a small grid, and 

general information as a number. For the list, we need such a neural network that an identical 

set of items in different orders would produce the same results. This can be achieved with 

transformers [23]. Transformers are DNN that utilize a self-attention mechanism to capture 

contextual relationships within sequential data [24]. Unlike traditional neural networks and 

variants of Recurrent Neural Networks, such as Long Short-Term Memory, Transformer 

models excel at managing long dependencies among input sequence elements and facilitate 

parallel processing. Consequently, Transformer-based models have garnered significant 

attention from researchers in the field of artificial intelligence. This is due to their 
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tremendous potential and impressive accomplishments, which extend beyond NLP tasks to 

encompass various domains [16, 22], including Computer Vision, audio and speech 

processing. For a small grid, we can use either CNN or just the FC layer in case the subgrid 

is too small for CNN to convolute anything meaningful. And for general information, we can 

pass it through a small FC layer or just keep it as is. 

After all parts are processed by the according network parts, we concatenate them 

and feed them into the output FC layers. 

Preprocessing 

For entity encodings, in addition to the fields mentioned in Table 1, we added 

distance by coordinates from entity to base, player, and enemy tanks. This change sped up 

convergence at least twice. 

Simultaneously on the map can be no more than 4 enemy tanks, 1 bullet per enemy, 

and 2 bullets per player. Bonuses are not limited, so we take into account up to 3 of them. 

Thus, the maximum list size comes out to 16. 

The game map is continuous. To create a grid, we divide the map into cells, each the 

size of one wall part. Then cells around the player are taken. The chosen subgrid size is 

11x11, and the and the whole map is 26x26. 

In the general information part, we added the coordinates of a player, though we did 

not observe the significant effect of this change on the convergence. 

Architecture overview 

The original transformer has sequence input and output [25]. While we need such 

input, for output, we would want hidden representations to be combined with others. In order 

to achieve this, we can modify the transformer. 

The encoder part is left unchanged. For the decoder, we remove output sequence self-

attention since we don’t have an output sequence; instead, we create a special token 

embedding for the query with an appropriate size. Encoder outputs with query tokens are 

passed to the multi-head attention layer with normalization and then fed forward in the in the 

same way as before. Also, we don’t apply softmax activation at the end. 

Entity embeddings are obtained as a concatenation of separate embeddings of each 

categorical feature and non-categorical features. 

The complete neural network architecture is presented in Figure 3, with its 

configuration below. 

General information feed forward consists of two layers with 16 and 8 neurons. 

Entity embedding has 32, 16, and 8 sizes for type, team, and direction features, respectively. 

The modified transformer has three encoding layers and one decoder layer. Fully connected 

layers have 1024 neurons. The output size is 256. Grid feed forward has 3 layers with 256, 

128, and 64 neurons. Output feed forward has 3 layers with 1024, 256 neurons, and the last 
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output has size 1 for the state-value network and the same size as the action space for the 

policy network. All activation functions are ReLU.  

 

Figure 2. Transformer comparison.  

Original is on the left, and modified is on the right 

 

Figure 3. Network architecture 

It is worth noting that network with approximately 2 times fewer neurons in each 

layer can converge as well, while network with 4 times fewer neurons will not. 
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Experiments 

Random agent performs poorly in the Battle City environment: he usually destroys 

his base within the first 100–200 steps while scoring 0 reward. However, with little training, 

he learns to move slightly forward so that he can’t accidentally break base. In this case, he 

scores on average 4 points out of 20 and has a 0.1% winrate. Also, such an average is 

achieved by policy when the agent only fires forward. We take this as a baseline.  

The agent can quickly reach this baseline, but improving further takes a significant 

number of steps. With optimal parameters, around 500k steps are required to reach an 

average score of 6, while bad parameters can increase this number up to 2m steps. So, our 

standard training for parameter evaluation takes 3m steps.  

On top of that, the training process is highly random. Even with exactly the same 

parameters, we can observe differences up to 3 points. The best training run had an average 

of 11 after 3m steps, while the worst run had an average of 8. Hence, for each set of 

parameters, we made at least a few training runs to get more accurate results. And even so, 

we can only evaluate significant hyper-parameters since the impact of insignificant ones 

can’t be distinguished from randomness by the number of runs made.  

 

Figure 4. Reward graph after training for 3m steps that resulted in 8 average score 

Training 

After some time of hyper-parameter searching, we settled on the set presented in 

Table 2. Most parameter values are default ones or were discovered quickly, but gamma is 

worth discussing. 
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Table 2 

Parameters 

Parameter Value 

Trajectory length 20 

Batch size 32 

Experience Replay 10,000 trajectories 

Gamma (Discount) 0.999 

Entropy 0.003 

Learning rate 1e-5 with manual decay to 1e-8 

 

In the initial stages, lower gamma values (< 0.998) result in 2–3 times faster convergence. 

However, the final policy is suboptimal, and the agent reaches only ~45% winrate. With such low 

gamma, the agent cares only about the next few hundred steps, which is not enough to train to 

defend the base. Consequently, the agent aims to destroy tanks as fast as possible, and the base is 

often lost. On the other hand, larger gamma values (> 0.9999) result in much slower convergence, 

and it’s not clear if policy can converge at all with them. 

Results 

The agent was trained for 200m steps using the above parameters. Further training 

didn’t improve performance. The final policy achieves a 75% winrate on the first level of 

Battle City. This alone is good since Atari agents were not able to win frequently, but at the 

same time, our agent can generalize well and solve previously unseen levels. 

While it was trained only on the first level, the agent reaches 16% winrate on the 

second level, which has a different map. It is almost five times lower than on the first level, 

but it is obviously better than our baseline and clearly shows generalization. Also, such a 

decrease in performance can be explained by the presence of steel walls that impact 

gameplay, in contrast to the first map, where they were placed on the edges and weren’t 

interacted with that often. 

If we were to train our agent on more maps, each next one would require less time, 

and eventually the agent would be able to solve any map. This drastically differs from 

learning on pixels, where the agent just overfits to each observed situation and cannot 

generalize at all (the inability of the pixel agent to generalize on levels can be seen, for 

example, in the notebook [25] on the Ms. Pacman game). And it can speed up training by 

orders of magnitude. 

In most of the 25% of lost games, the agent fails because he chooses the incorrect 

path to chase the enemy, who is approaching base and is slower as a result. This is caused by 

limited information about the map. To further increase performance and possibly achieve 

100% winrate, it’s recommended to find a way to efficiently incorporate full information 

about walls and other map objects. 
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Figure 5. Second level of Battle City 

Conclusion 

We have demonstrated in the Battle City environment the way to represent the state 

and to build the corresponding model that results in largely increased performance of the 

reinforcement learning agent and allows it to generalize to previously unseen situations. The 

agent was trained for 200 million iterations. Further training did not improve the results. 

Final results reach 75% win rate in the first level of Battle City. In most of the 25% of games 

lost, the agent fails because he chooses the wrong path to pursue an enemy that is closer to 

the base and therefore slower. The reason for this is the limitation of map information. To 

further improve performance and possibly achieve 100% win rate, it is recommended to find 

a way to effectively include full information about walls and other map objects. Such 

techniques could then be applied to real-world problems to enhance existing reinforcement 

learning solutions. 
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