
UDC 004.9:004.021
M. Shmatko, O. Zhurakovska

USE OF SCHEDULE THEORY ALGORITHMS
FOR TASK PLANNING AND TIME MANAGEMENT

Abstract: Good time management is a key factor in the success of work tasks and
project management. In particular, scheduling tasks are an important part of workflow
organization. At the moment, there are many algorithms for solving such tasks, but the
algorithms must be customized to specific conditions, while ensuring the quality of the task
and performance. In this article, a hybrid algorithm that combines elements of evolutionary
and greedy approaches to solve the problems of schedule theory is proposed.

Keywords: schedule theory, task scheduling, evolutionary algorithm, greedy algorithm,
time-management.

Introduction

Planning is a decision-making process that is regularly used in many industries and
services. It is associated with the allocation of resources to perform tasks over a period of
time, and its goal is to optimize one or more objectives [1].

The creation of a task schedule is the result of the planning process. An efficiently
created schedule allows you to optimize time and resources, increasing the efficiency and
quality of work performed. The tasks of creating schedules and optimizing them are relevant
for both individual users and project teams.

The task of creating an effective schedule is used in many areas. In manufacturing
industries, it helps to optimize resource and time consumption. For logistics, it helps to
allocate time more efficiently, plan deliveries, etc. The most common use of scheduling ideas
is in everyday life, when creating individual schedules and timetables.

To solve scheduling problems, the theory of scheduling is used, which provides a
wide range of tools for solving these problems. Scheduling theory is a branch of optimization
that studies methods and algorithms for efficiently allocating resources over time to achieve
certain goals. It covers various aspects of planning and time management, including task
scheduling, work allocation, project planning, interval scheduling, etc. [2].

The theory of schedules provides a wide range of algorithms for solving scheduling
problems. The choice of an algorithm for solving a particular problem is determined by the
given condition and input data, as well as the priority criteria for the algorithm's efficiency.
The main criteria are speed and quality of the result. Depending on the requirements for the
algorithm, both of the criteria can be selected as priorities.

The greedy scheduling algorithm is a well-known one. It works by iteratively
selecting the most efficient option available based on a predefined criterion. This can be, for

© M. Shmatko, O. Zhurakovska

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (45) 2024

 ISSN 1560-8956 222

example, the earliest start time or the shortest processing time. The algorithm distributes tasks
between time intervals without taking into account further consequences. In terms of
computing power, this approach is efficient. It is also quite simple to implement, which
allows it to quickly generate realistic schedules. However, since it only makes decisions
based on local current information, without any forward-looking consequences, greedy
algorithms may ignore better solutions that could be obtained by considering the entire
problem space [3]. Therefore, although useful in certain circumstances, they may require
additional refinement or optimization to improve the results obtained.

In turn, the evolutionary or genetic algorithm was inspired by the ideas of biological
evolution and genetics. To solve a problem, the algorithm imitates the processes of natural
selection: in the first step, a population of potential solutions is randomly created. Then, over
several “generations,” the algorithm selects and combines the best of them, i.e., those that are
most adaptable or best meet the criteria. This mimics the biological processes of selection,
mutation, and crossbreeding. This iterative process makes it possible to find an optimal or
close to optimal schedule for the requirements [4].

This article is devoted to solving the task of scheduling. The set of tasks of the
performer is given, from which it is necessary to form a schedule for the day so that the
working day is completely filled with tasks. Tasks are penalized for not being added to the
schedule and delayed compared to the target date. The contractor also determines the priority
of the task and the importance of meeting the deadline. It is necessary to create a schedule for
which the total penalty will be minimal.

Problem formulation

Let the set of tasks Т={ }, i= be given. Given the length of the interval t, the

schedule should be drawn up on the interval from 0 to t. For each task there are the duration
of the task (=), priority (=), directive term (=) and weighting

coefficient of delay relative to directive term (=). The final schedule may or may not

include tasks. Let R be the set of tasks included in the schedule, L be the set of tasks not
included in the schedule, R L = T. After the schedule is formed, the total penalty is
calculated using the formula:

 , (1)
where – the priority of the task , - task completion time in the schedule.

The problem has a limitation:

 - the total duration of the tasks included in the schedule should
not exceed the length of the interval for which the schedule is being developed;

 - the difference between the length of the interval for
which the schedule is developed and the total duration of the tasks included in the schedule
must be less than the shortest duration of the task from the set of tasks that are not included in
the schedule;

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (45) 2024

 ISSN 1560-8956 223

 tasks cannot be interrupted by other tasks;
 - the final schedule may or may not include tasks.
You need to build a schedule for which the value of the total penalty d is minimal. At

the same time, you need to take into account all available constraints.

Justification of the chosen method

Problems in the theory of schedules are often considered to be hard combinatorial
problems. To solve them, there are various methods, such as greedy algorithm, genetic
algorithms, simulated annealing, branch-and-bound method, metaheuristic methods, and others.
These approaches cover various aspects of optimization and search for optimal solutions.

One of the most popular approaches to solving problems in the theory of scheduling is
to use greedy algorithms [1]. Greedy algorithms work on the principle of choosing the most
optimal step at each stage of solving the problem. In the context of schedule theory, this may
mean choosing the schedule with the smallest penalty at each step of the schedule construction.

The branch-and-bound method is also used to solve such problems [1]. This method is
used to accurately solve combinatorial problems by systematically searching through possible
solutions and using upper bounds to eliminate the worst branches of the search tree.

Metaheuristic methods are also well-known [3]. This is a broad class of optimization
algorithms that model stochastic processes to find optimal solutions. These include particle
swarm algorithms, squeezing algorithms, and others.

To solve this problem, we can use an evolutionary algorithm [3]. To do this, add the
parameters n, the number of iterations for the algorithm, and s, the number of initial random
distributions. After that, a set of initial schedules is randomly selected. Next,
new schedules are generated n times by crossover and mutation of the existing schedules in the set
C. At the end of the algorithm, the schedule ci with the lowest total penalty d is selected.

The advantages of this method include efficiency at sufficiently large values of the
number of iterations n. However, the method has a significant drawback - due to the large
number of iterations, the algorithm takes a relatively long time to execute, and as the number
of iterations decreases, the efficiency decreases.

Both of these approaches have their advantages and limitations. Greedy algorithms are
fast but do not always provide the optimal solution, while genetic algorithms can be more
powerful but require more computing resources.

The proposed method for solving the problem is a hybrid algorithm that combines
elements of evolutionary and greedy approaches. This method was chosen because an
approximate solution provided in real time will be sufficient to solve the problem. The advantage
of this modified method over the evolutionary method is better performance due to fewer
iterations and the efficiency of the algorithm. The thesis [5] presents a scheme of this approach,
which is applied to the problem of the theory of schedules with a common directive term.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (45) 2024

 ISSN 1560-8956 224

Algorithm for solving the problem

The pseudocode of the proposed hybrid algorithm is as follows:
Algorithm (allActivities, n, minHour, maxHour):
Schedules[] allSchedules
Schedule firstSchedule
SORT allActivities by priority
boolean flag = True
integer hour = minHour
WHILE (flag):
 Activity activity
 if (activity.Duration > maxHour - hour)
 break
 hour += activity.Duration
 ADD activity to firstSchedule
 REMOVE activity from allActivities
 if (allActivities.Count = 0)
 flag = False
ENDWHILE
ADD firstSchedule to allSchedules
FOR Count = 1 to n
 Schedule mutadedSchedule = Mutation (allSchedules)
 ADD mutatedSchedule to allSchedules
 Schedule crossowerSchedule = Crossover (allSchedules)
 ADD crossowerSchedule to allSchedules
ENDFOR
SORT allSchedules by penalty
RETURN allSchedules[0]
At the first stage, a set of schedules is created and an initial schedule is generated

using a greedy algorithm. The initial set of tasks is sorted in descending order of priority, and
then the tasks are added to the schedule one by one until the entire schedule interval is filled.
The second stage involves mutation and crossover of the existing schedules for the number of
iterations specified by the task conditions. At the third stage, the set of schedules is sorted by
increasing total penalty, and the first schedule of the sorted set is returned as the solution.

Analysis of the results

In this section, we study the efficiency and speed of the proposed hybrid algorithm in
comparison with the evolutionary algorithm. The input data are presented in table 1.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (45) 2024

 ISSN 1560-8956 225

Table 1.

Input data

Name Description The value of the variable

Т Set of tasks A randomly generated set of
tasks of length m

m Dimensionality of the set of tasks 10-100

 Duration of the task i, i= Random value (=)

 Weighting coefficient of delay relative to the
target date

Random value (=)

 Priority of the task i, i= Random value (=)

 Directive term of the task i, i= Random value (=)

n Number of iterations of algorithms 25-150

s The number of initial random schedules for the
evolutionary algorithm

25-150

Let's solve the problem with the given input data using evolutionary and hybrid

algorithms. Let n = 25 for both algorithms, s = 25, m = . For each value of the problem

dimension, 100 experiments are performed for both methods. The average running time of
the algorithm and the average total penalty are calculated as the arithmetic mean of all
experiments. The results are shown in fig. 1 and fig. 2.

Figure 1. Comparison of work efficiency

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (45) 2024

 ISSN 1560-8956 226

Figure 2. Performance comparison

From the results obtained, we can conclude that the hybrid algorithm shows better
results in terms of efficiency, but the difference in performance is significant in favor of the
hybrid algorithm. As the problem dimension increases, the average total penalty increases for
both algorithms, but the performance does not decrease significantly.

Let's increase the number of iterations for both algorithms (n = 50, s = 50). The results
are shown in fig. 3 and fig. 4.

Figure 3. Comparison of work efficiency

From the results obtained, we can conclude that as the number of algorithm iterations
increases, the efficiency of the algorithms improves. The difference in the efficiency of the
algorithms remains constant and small, but the difference in speed is significant.

Letm = 15, , . The results are shown in fig.5 and fig.6.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (45) 2024

 ISSN 1560-8956 227

Figure 4. Performance comparison

Figure 5. Comparison of work efficiency

Figure 6. Performance comparison

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (45) 2024

 ISSN 1560-8956 228

From the results obtained, we can conclude that although the efficiency of both
algorithms increases with the number of iterations, this improvement is relatively small (30%
for the genetic algorithm and 40% for the hybrid algorithm with an increase in the number of
iterations by 1400%). Instead, with an increase in the number of iterations, the performance
of the genetic algorithm decreases more significantly than for the hybrid algorithm.

Conclusions

Task planning and time management are important aspects of project management
and workflow organization. The use of algorithms allows you to improve and automate the
processes of solving scheduling tasks.

The proposed hybrid algorithm, which combines elements of evolutionary and greedy
algorithms, allows solving the tasks of scheduling more efficiently and quickly compared to
the use of an evolutionary algorithm. In today's world, the performance of the chosen
algorithm is an important criterion for assessing the quality of work, so the proposed
approach is relevant.

Experiments were conducted to compare the efficiency and speed of the hybrid and
evolutionary algorithms. The results obtained allowed us to conclude that the evolutionary
algorithm demonstrates lower performance than the hybrid algorithm with the same input
data. With a significant increase in the number of iterations of the hybrid algorithm, the
efficiency of the work is significantly improved, while the running time of the algorithm
remains relatively short compared to the evolutionary algorithm.

It is worth noting that the choice of an algorithm for a scheduling problem depends on
the conditions of the problem and the input parameters. Algorithms may be better suited for a
certain type of task, but may be inefficient or not suitable for other tasks.

It should also be noted that with minor changes in the initial conditions of the
problem, the proposed hybrid algorithm can be modified to solve the problem.

REFERENCES

1. Scheduling Theory, Algorithms, and Systems / Michael L. Pinedo – 2012. –
5 Edition – P. 1-3.

2. Theory of Scheduling / Michael L. Pinedo - 2016. - P. 1-10.
3. Introduction to Algorithms / Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest, Clifford Stein - 2022 - P. 341-351.
4. Genetic Algorithm in Search, Optimization and Machine Learning / David E.

Goldberg – 1989 – P. 1-2.
5. Shmatko M., Zhurakovska O. Using theory of scheduling algorithms for tasks

planning and time management. Proceedings of the V International Scientific and Practical
Conference of Young Scientists and Students “Software Engineering and Advanced
Information Technologies (SoftTech-2023)”, Kyiv, 19-21 Dec., 2023. P.385-387.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (45) 2024

 ISSN 1560-8956 229

	ФІОТ
	Binder1
	+Khotin_karyna
	+Linevych_Lisovychenko_150824_
	+Mulish
	+Shymkovych_Osypenko_44_2024
	+Stenin_Lisivichenko
	+Stenin_Pasko_ASAC_07_10
	+StorchunMamedova
	+Yuriy_Danyliuk,_Oksana_Zhurakovska
	+Бєліков Ліхоузова
	+Галайко_Олійник
	+Зарічковий
	+Зінкова_Коган
	+Іващенко_Уляницька
	+Марценюк
	+Михайленко
	+Морозов_Орленко
	+Новінський
	+Павлов_Кисельов_Палеха
	+Пізнак Ліхоузова
	+Смілянець
	+Сом_Коган
	+Стаття_Вітковський_Теленик_виправлено
	+Шматко_Жураковська

	Зміст
	УДК Українською
	UDC АНГЛ
	Про авторів

