УДК 621.38(62-52)

Е.И. Чумаченко, Н.В. Демин

УСТОЙЧИВОСТЬ АЛГОРИТМОВ ИДЕНТИФИКАЦИИ ОТПЕЧАТКОВ ПАЛЬЦЕВ ПРИ ИСПОЛЬЗОВАНИИ ФУНКЦИЙ ЛОКАЛЬНОГО ВЫРАВНИВАНИЯ

Аннотация: Даная статья исследует на устойчивость алгоритмы идентификации отпечатков пальцев основные на методах деталей при условии использования функций локального выравнивания. В основном при снятии отпечатков пальцев с помощью сенсоров картинка отпечатка нелинейно искажается скручиванием или растяжением. Эти нелинейные искажения изменяют место положения и ориентацию деталей, тем самым уменьшая эффективность методов на них же и основанных. Поэтому в сравнительных методах, использующий одно сочетание пар деталей, надежность уменьшается при увеличении расстояния между деталями. Но можно повысить устойчивость алгоритмов основанных на данных методах, если использовать локальное выравнивание изображений и нормализировать расстояние между парой деталей.

Ключевые слова: алгоритмы идентификации отпечатков пальцев, нормализация расстояний

Введение

Отпечатки наших пальцев состоят из ребер и впадин. У ребер есть различные виды неоднородностей, такие как двойное раздвоение ребра, окончание ребра, короткие ребра, острова и пересечения ребер. Среди этих неоднородностей раздвоение ребра и окончание ребра обычно используются в системах идентификации и называются деталями (minutiae). В зависимости от размера считывающей области, отпечаток пальца, полученный с устройства считывания на лету, может содержать от 30 до 60 деталей. Несмотря на шрамы, грязь, и состояния кожи, что делает процесс идентификации еще менее эффективным так это растягивания конечного изображения в следствии давления пальца на поверхность сенсора, что влечет за собой скручивания, растягивание, и прочие нелинейные искажения.

Многие исследователи использовали в своих алгоритмах преобразования Хафа и проверку на основе сходства локальных структур. Но эти алгоритмы в итоге используют методы и одним параметром глобального выравнивания. Однако когда палец прижимают к сканеру отпечатков то давление между поверхностью и пальцем растягивает, закручивает и сдвигает кожу пальца, что в результате искажает получаемое изображение. Искажение в свою очередь увеличивает расстояния между деталями, что в свою очередь затрудняет нахождение и идентификацию пар деталей, таким образом, снижая общую надежность всего алгоритма основанного на глобальном выравнивании.

[©] Е.И. Чумаченко, Н.В. Демин, 2010

Данная статья показывает, как изменяется устойчивость алгоритма основанного на деталях при использовании функций локального выравнивания и нормализации дистанции. При нормализации дистанции между деталями по частоте ребер при каждой детали, вариация дистанции нелинейным искажением минимизируется. Позиция и ориентация деталей расположенных в ближайших областях также менее затронуты нелинейными деформациями поскольку воздействие нелинейных деформаций проявляется в конкретных районах и спадает при отдалении.

Метод деталей

В большинстве алгоритмов идентификации отпечатков пальцев, основанных на методах деталей, характеристический (далее хар-кий) вектор FV_k составленный из атрибутов детали, таких как координата $l_k(x_k, y_k)$, местное направление ребра φ_k , и тип детали t_k , который является окончанием ребра или раздвоением. Мы используем частоту ребер детали как 4-ый элемент хар-кого вектора, она содержит информацию о локальных деформациях окружающих регионов. Наш хар-кий вектор может быть выражен следующим образом:

$$FV_k = (l_k, \varphi_k, t_k, f_k)^T, \tag{1}$$

мы также определим среднее число частоты ребра *f*_{avg} как следящее:

$$f_{\text{avg}} = \frac{1}{N} \sum_{k=1}^{N} f_k,$$
 (2)

где N это конечное количество деталей.

Рис. 1 – Элементы хар-кого вектора.

В большинстве случаев среднее число частоты ребер в изображениях отпечатков пальцев держится в одинаковом диапазоне, несмотря на нелинейное искажение. Поэтому мы и используем это значения для нормализированния расстояния между деталями.

Нормализизация расстояния

Отпечаток деформируется по вращению и растяжению когда палец надавливается на сенсор. Это нелинейное деформирование искажает позицию и ориентировочный поворот деталей. Расстояние между деталями находящимися в деформированной области изменяется относительно ориентации ребер, их частоты в каждой детали и направления линии проходящей через две детали. Изменение дистанции увеличивается при том как угол, между линией проходящей меж двух деталей и направлением ребер, приближается к перпендикуляру. Но с другой стороны изменение расстояния уменьшается при том как угол подходит к нулю. Изменение дистанции между деталями в деформированной зоне показана на рис. 2.

Рис. 2 – Изменение расстояния в деформированной области: (a) и (b) показывают большое искажение, (c) и (d) показывают незначительное искажение.

Расстояние между деталями является важным фактором в методах основанных на деталях. Для минимизации ошибки расстояния при нелинейном, нормализуем расстояние используя показатель частоты ребер. Процесс нормализации следующий. Частота ребер в каждой детали P, Q является f_0 а расстояние между P и Q, при отсутствии нелинейных искажений, есть D_0 . Для того чтобы изображение имело нелинейное иска-

жение мы определяем нормализированное расстояние как D_0 используя частоты ребер f_p , f_q , направление ребер φ_p , φ_q , расстояние D^C между двумя деталями и направление линии θ_{pq} , которая проходит между двумя деталями: $0 \leq \varphi_p$, $\varphi_p \leq \pi$, $0 \leq \theta_{pq} \leq \pi$

$$D_0' = \frac{\theta_p \cdot f_p + \theta_q \cdot f_q}{\theta_p \cdot \theta_q} \cdot \frac{D_C}{f_O},\tag{3}$$

$$\theta_p = \begin{cases}
| heta_{pq} - \varphi_p| & \text{if } | heta_{pq} - \varphi_p| \leqslant \frac{\pi}{2} \\
\pi - | heta_{pq} - \varphi_p| & \text{otherwise}
\end{cases},$$
(4)

$$\theta_{q} = \begin{cases} |\theta_{pq} - \varphi_{p}| & \text{if} |\theta_{pq} - \varphi_{p}| \leqslant \frac{\pi}{2} \\ \pi - |\theta_{pq} - \varphi_{p}| & \text{otherwise} \end{cases}$$
(5)

где θ_p , θ_q – это разница между направлением ребер в каждой детали и направлением линии проходящей через эти детали : $0 \leq \theta_p$, $\theta_{pq} \leq \frac{\pi}{2}$.

Локальное выравнивание

Используя локальную корреляцию предложенную К. Джангом [5] мы получим исходную пару деталей и надежную зону с наивысшим потенциалом успешного сравнения. Этот метод создает локальную структуру состоящую из центральной детали и некоторых соседних, и сравнивает схожесть локальных структур сделанных в сканированном изображении и изображении из базы данных. Ми рассматриваем пару центральных деталей в локальных структурах, которые имеют наивысшую схожесть, как изначальную опорную пару деталей PR_0^T , PR_0^I .

Далее мы вводим лимит радиуса R региона окружающего деталь в полученном изображении. Деталь в этой зоне выравнивается по соответствующей парной детали, при конвертировании в полярную систему координат (рис. 3).

$$X = \begin{pmatrix} r_i \\ \theta_i \\ \varphi_i \\ f_i \end{pmatrix} = \begin{pmatrix} \sqrt{(x_k - x_r)^2 + (y_k - y_r)^2} \\ \tan^{-1} \left(\frac{y_k - y_r}{x_k - x_r}\right) \\ \varphi_k - \varphi_r \\ f_k \end{pmatrix},$$
(6)

где $(r_i, \theta_i, \varphi_i, f_i)$ это представление і-той детали в системе полярных координат.

В сканированном изображении, зона поиска S_{area} для детали P_i^T скорректирована используя нормализированное расстояние. Нормализированное расстояние рассчитывается при помощи формул (3)–(5) :

$$r_N^T = \frac{\theta_{RP}^T \cdot f_{RP}^T + \theta_p \cdot f_p}{\theta_{RP}^T \cdot \theta_p} \cdot \frac{r_i^T}{f_{avg}},\tag{7}$$

где f_{PR}^T и f_p это частоты ребер PR_i^T и P_i^T , θ_{PR}^T и θ_p это различие между направлением ребер в каждой детали и направлением линии проходящей между ними. f_{avg} – это средняя величина частоты ребер в шаблонном изображении а r_i^T это эвклидово расстояние между PR_i^T и P_i^T . Размер

поисковой зоны для детали P_i^T вирируется соответственно к нормализированному расстоянию. Поисковая зона ограничена :

$$S_{area} = (r_{\lim}^S, \theta_{\lim}^S), \tag{8}$$

где r_{lim}^S ограничении расстояния: $r_N^T - r^S \leqslant r_{\text{lim}}^S \leqslant r_N^T + r^S$, r^S – устойчивость расстояния, а θ_{lim}^S – ограничения угла: $\theta_N^T - \theta^S \leqslant \theta_{\text{lim}}^S \leqslant \theta_N^T + \theta^S$, θ^S – разница углов между двумя деталями а θ^S устойчивость угла.

Рис. 3 – Изначальная опорная пара деталей в локальных зонах: (а) шаблонное изображение, (b) сканированное.

Мы задаем зону поиска базируясь на точке сканируемого изображения которая соответствует P_i^T , и потом находим деталь в зоне поиска. Если в зоне поиска существует любая деталь Q_i^T мы рассчитываем $r_{\rm diff}$, $\theta_{\rm diff}$, и φ_{diff} : первое это разница расстояния, второе - разница угла, и последнее разница направления ребер между двумя минутами. Чтобы вычислить r_{diff} нам нужно нормализировать расстояние между PR_i^I и Q_i^I . r_N^I и есть нормализированное расстояние:

$$r_N^I = \frac{\theta_{RP}^I \cdot f_{RP}^I + \theta_p \cdot f_p}{\theta_{RP}^I \cdot \theta_p} \cdot \frac{r_j^I}{f_{\text{avg}}},\tag{9}$$

где
и f_{PR}^I – частоты ребер PR_i^I
и Q_j^I, θ_{PR}^I и θ_Q – разница между направлениями ребер в каждой детали и направлением линии которая проходит через них. Три параметра r_{diff} , θ_{diff} , и φ_{diff} вычисляются:

$$r_{\rm diff} = |r_N^T - r_N^I|,\tag{10}$$

$$\theta_{\rm diff} = |\theta_p - \theta_Q|,\tag{11}$$

$$\varphi_{\rm diff} = |\varphi_p - \varphi_Q|, \tag{12}$$

где φ_P и φ_Q – направление ребер в P_i^T и Q_j^T в полярной системе координат. Мы используем адаптивный блок сравнения для того, что бы опре-делить где, две детали P_i^T и Q_j^T совпадают. Размер совпавшего блока, меняется в зависимости от нормализированного расстояния :

$$r_{\rm lim}^{M} = \begin{cases} r_L & \text{if } r_N^T > T_L \\ r_H & \text{elseif } r_N^T > T_H \\ \frac{r_H - r_L}{T_H - T_L} \cdot r_N^T + 1 & \text{otherwise} \end{cases}$$
(13)

$$\theta_{\rm lim}^{M} = \begin{cases} \theta_L & \text{if } r_N^T > T_L \\ \theta_H & \text{elseif } r_N^T > T_H \\ \frac{\theta_H - \theta_L}{T_H - T_L} \cdot (r_N^T - T) + \theta_H & \text{otherwise} \end{cases}$$
(14)

$$\theta_{\rm lim}^M = \varphi_T,\tag{15}$$

где мы эмпирически определили значения этих параметров: $T_L = 30$, $T_H = 70$, $r_L = 4$, $r_H = 8$, $\theta_L = \pi$, $\theta_H = \pi$, $\varphi_T = \pi$. Мы адаптировали совпавшие пары деталей с опорными парами деталей для следующего сравнения и выполнили процесс повторно. Сравнительный результат MS вычисляется по формуле:

$$MS = \frac{100N_{mat}}{num\{Template \cap Input\}},$$
(16)

где N_{mat} – количество совпавших деталей, $num\{Template \cap Input\}$ – количество детальностей в общем регионе.

Таблица 1

Уровень подтверждения и уровень отторжения.

Уровень подтверждения	Уровень отторжения
100%	12.1%
99.98%	9.7%
99.72%	4.3%
99.58%	0.0%

Результаты эксперимента

Для эксперимента была взята база образцов отпечатков пальцев. Раэмер каждого 248х292 пикселей с разрешением 450 dpi, 1000 образцов отпечатков пальцев(по 10 для 100 лиц) с различным качеством были использованы в эксперименте. Каждый образец проверяется с каждым другим в наборе, уровень подтверждения и уровень отторжения в предложенном сопоставительном алгоритме, вычисляется по формуле:

Verification rate =
$$\frac{N_C}{N_C + N_F} \times 100,$$
 (17)

$$\mathbf{Reject\ rate} = \frac{N_R}{N_T} \times 100,\tag{18}$$

где N_c – количество совпадений, N_F – количество не совпадений, N_T – общее количество совпадений и N_R – количество отвергнутых образцов. В таблице 1 показаны результаты производительности эксперимента. В добавок для того, что бы увидеть эффект повышения устойчивости сравнительного алгоритма основанного на локальном сглаживании,

Рис. 4 – Сравнение производительности локального и глобального сглаживания.

мы сравнили сопоставительные результаты в сравнительном алгоритме основанного на глобальном сглаживании. Рис. 4. Производительность в сопоставительных системах увеличена при помощи сопоставительного алгоритма основанном на локальном сглаживании.

Вывод

В этой статье, представлено как повышается устойчивость алгоритма основанного на деталях при использовании локального выравнивания. Мы использовали частоту ребер для нормализации расстояния между двумя деталями, а так же для минимизации расстояния разброса вызванного линейной деформацией. Мы использовали несколько опорных точек для сглаживания, которые делают алгоритм более устойчивым. Результаты эксперимента показывают, что предложенный подход более производителен.

Литература

- 1. Хонг Л., Ван У.и Джейн А.. "Алгоритм улучшения изображения отпечатков пальцев и оценка эффективности", 1998 г. // Hong L., Wan Y., and Jain A.. "Fingerprint images enhancement algorithm and performance evaluation". 1998.
- Джейн А., Бол Р.и Панканти С. "Биометрия: персональная идентификация в сетевом обществе" 1999 г. // Jain A., Bolle R., and Pankanti S. "BIOMETRICS: Personal Identification in Networked Society". 1999.
- Джейн А., Хонг Л.и Бол Р."Идентификация отпечатков пальцев на лету" 1997 г. // Jain A., Hong L., and Bolle R.. On-line fingerprint verification. 1997.

- 4. Джианг К.и Йау В.У. "Алгоритм сопоставления детальности отпечатков пальцев, основанный на местных и глобальных структурах" 2000 г. // Jiang X.and Yau W. Y.. "Fingerprint minutiae matching based on the local and global structures". 2000.
- 5. Луо К., Тиан Д. и Ву У. "Алгоритм сопоставления детальности отпечатков пальцев" 2000 г. // Luo X., Tian J., and Wu Y.. "A minutia matching algorithm in fingerprint verification". 2000.
- 6. Раса Н., Кару К., Шаоюн С.и Джейн А. "Системы сравнения больших баз отпечатков пальцев в режыме реального времени" 1996 // Ratha N., Karu K., Shaoyun C., and Jain A.. "A real-time matching system for large fingerprint databases". 1996.

Отримано 06.12.2010 р.