MiXBiZIOMUYHI HAYKOBO-TEXHIYHHUH 30ipHUK «AJANTHBHI CHCTEMH aBTOMAaTHYHOTO ynpasiiHHa» Ne 27 (47) 2025

UDC 004.42,94
K. Hazin, A. Volokyta

VIDEO GAME TEST AUTOMATION APPROACH

Abstract: The article is devoted to the research of video game test automation and means to
achieve it. Test automation helps speed up the development process and create video games more
efficiently. But rates of test automation in the industry are low. Classic means of test automation do
not easily apply to the game development field, plus they don’t cover non-functional layers of
development. It is caused by the nature of the field with rapid changes in design and requirements
and its multidisciplinarity, where correctness is not enough to assess the quality of software.
Considerable attention is paid to examine different levels of test granularity and their effect on
testing: assertions, unit tests, integration tests, End-to-End tests and non-functional tests. The article
overviews different levels of testing and examines a case study for each level, describing how
much value it brings to the team, which adopted it. The solution provides a test approach that is
easy to maintain, and enables testing of different non-functional qualitative criteria.

Keywords: test automation, pyramid of testing, assert, non-functional testing.

Introduction

Among other software development fields, video games are one of the least tested of them,
and one of the most complex. Nowadays it takes years to patch a modern game for it to be
arguably bug-free, and the development takes a lot of time and resources. The job market is full of
QA specialists, but the number of bugs in released game titles does not seem to be receding. On the
contrary, more modern, bigger games release more buggy, even if they have more than enough
QA, and it takes them a lot longer to release and a lot more money to make. One of the reasons for
this lies in the lack of test automation during game development. In the figure 1 you can see the
comparison of two development timelines. The yellow line shows the development with the test

automation. And we can see that the bug count is a lot more manageable.

Benefits of Extra Build Confidence

CRUNCH!

300 |
« Reduced time to verify build === \\
|

» Reduced manual testing
» Very low bug count

« Reduced crunch

Figure 1. Automated vs manual testing results [1]

“ K. Hazin, A. Volokyta

32 ISSN 1560-8956

MiXBiZIOMUYHI HAYKOBO-TEXHIYHHUH 30ipHUK «AJANTHBHI CHCTEMH aBTOMAaTHYHOTO ynpasiiHHa» Ne 27 (47) 2025

Problem tasks

Nowadays, when games only grow in sizes, the development takes longer and longer,
and it takes much more people than earlier. One of the ways to reduce people and time cost is
to automate processes. One of the least automated game development fields is testing. Test
automation can help greatly reduce time and number of people involved to deliver a game. We
can see comparisons for automated and manual testing processed in figures 2 and 3, where the
same development team at Rare Ltd. compares their projects. In figure 2 we can see how test
automation lets them reduce time to verify build from 10 days to 1.5. And in figure 3 we can
see how test automation helps them reduce the required testers number from 50 to 17 people.

\\Days To Verify Build
\

\ Full Time Testers
50

200

17
15
— -

Kinect Sports Rivals Sea of Thieves Kinect Sports Rivals Sea of Thieves

Figure 2. Time to verify Figure 3. Test team size comparison [1]

build comparison [1]

Game testing in most companies consists of manual testing of the functional part of the
program. Automated testing is only a small part for them. This is due to the fact that the
requirements for this software change faster than in other areas of software development.
That’s because this kind of software interacts very closely with the user and its success directly
depends on how interested the player is in it. Because of this, regular playtests are conducted
to assess how much the game meets expectations and that it evokes exactly the emotions in the
player that are intended, and depending on this, the requirements for the software change.
There is also a very high need for optimization in terms of speed and memory usage. Because
of this, the code changes very often and when covering the code with autotests, a lot of effort
and time is spent on maintaining the relevance of these autotests, because the code that is
tested often changes due to frequent changes in requirements.

Classic test automation approaches use the test pyramid as the foundation of their test
structure (Fig.4). But it is disconnected from the state of the industry, which causes the low
rates of test automation in game development. This article will address all levels of test

automation and how it fits in the industry.

ISSN 1560-8956 33

MiXBiZIOMUYHI HAYKOBO-TEXHIYHHUH 30ipHUK «AJANTHBHI CHCTEMH aBTOMAaTHYHOTO ynpasiiHHa» Ne 27 (47) 2025

A A
more slower
integration

Service Tests

fmore Unit Tests
isolation v / "‘fasze.r

Figure 4. Classic test pyramid [2]

Unit tests

Unit tests are one of the most overlooked test categories in game development,
because code base changes very fast and classic unit tests become obsolete quickly, and
constantly need updating. Their support cost rises with each code change.

Kevin Dill, in his talk at the Game Developers Conference [3], discussed the
specifics of video game code coverage with automated tests. He introduces an alternative
definition of unit tests to one presented in the book «Art of unit testingy [4].

The definition presented in the book is: “A unit test is an automated piece of code
that invokes a unit of work in the system and then tests a single assumption about the
behavior of that unit of work.

A good unit test must:

- Be fully automated,

- Be able to be run in any order if it is part of a test suite;

- Consistently return the same result;

- Bereadable;

- Be easy to maintain;

- Reliable;

- Run quickly;

- Run in RAM (for example, without accessing files or a database);

- Have full control over all parts that are running (use system swapping to achieve
isolation as needed);

- Test a single logical concept in the system at a time.”

Kevin Dill in his report points out the need to increase the level of granularity of
tests. And if we return to the points mentioned above, he corrects them:

- run fast. Up to a certain limit. Not a critical attribute. Since tests can be divided into
performance levels. Fast ones are run locally, and slower ones are run during the CI/CD process;

- run in RAM. Not necessarily. The main argument for this point was to ensure the speed

of passing tests. So if you need to load files, or a database, or a network, then this can be neglected,;

34 ISSN 1560-8956

MiXBiZIOMUYHI HAYKOBO-TEXHIYHHUH 30ipHUK «AJANTHBHI CHCTEMH aBTOMAaTHYHOTO ynpasiiHHa» Ne 27 (47) 2025

- test a single logical concept in the system at a time and have full control over all
parts that are running. Kevin Dill calls these points clearly harmful in the context of video
game testing automation. Since requirements change very often, implementations change
because of this. And each change in implementation requires changing the code that tests
this implementation and the replaced parts of this system that are used for other systems.
This is what caused a lot of time spent on maintaining unit tests and the difficulty of
implementing them into the system before.

Kevin Dill's solution is to increase the granularity of unit tests. In the general sense,
such tests would be called integration or service tests. At the same time, in order to maintain
the robustness of the system at a low level of granularity, he suggests implementing tests in
the code itself that is to be tested. That is, to make assertions of the state of the system, the
state of input and output parameters at a low level in the program code itself. This approach
let Kevin Dill adopt unit testing for his team, after ten years of unsuccessful attempts.

Unit tests allowed his team to find old bugs, which were unnoticed by QA for years.
The most significant change was the developer velocity. This allowed developers to make
more rapid changes, because when they change something they don’t need to check in with
other developers to know if the changes are safe. It became a lot easier to make changes to
the old code, which hadn't been touched in a long time. And at the same time, it didn’t take a
lot of maintenance, because they were high level enough to be resilient to rapid code changes
in the details of implementation.

Assertions

Tigerbeetle inc. also advocates assertions. In 3 years, they have developed a state-of-
the-art database management system that processes financial transactions faster and more
reliably than their counterparts [5]. Their code writing style combined with a testing system
allowed them to achieve this goal [6].

One of the most important points from their code writing style is about assertions.
They assert each function at the input and output for data correctness, and all checks are
performed on the shiping version too. That is, if there is any error in the code, the program
crashes. Since the correctness of calculations is critical for a financial database. And if
correctness has not been achieved, then this is a critical error. It also allows you to outline
the positive and negative space of the program's operation, which allows you to write more
reliable and stable code in a shorter period of time.

Together with simulation testing, this helps them keep both reliability and quality at a
very high level. Their system is fully deterministic, which allows them to fully simulate the
entire distributed database system. Simulation testing can speed up the time many times and
help catch very complex and hidden errors. These methods allowed them to achieve success in
such a short period of time. A demonstration of simulation testing can be seen in the fig. 5.

ISSN 1560-8956 35

MixBigoMunii HAyKOBO-TEXHIYHHN 30ipHUK «ATalITHBHI CUCTEMH aBTOMaTHYHOTO yrpaBiiHH Ne 2° (47) 2025

SCENARIO: Radicactive | [|)|

SEED: 0xCC0B3418
REPLICAS: 5
CUENTS: 5

0xBEIDSD75

Figure 5. Tigerbeetle’s simulation testing [5]

As an example, Jamie Brandon, developer in Tigerbeetle in his blogpost describes
how he debugged and fixed a very complex low-level caching problem in just 8-10 hours

using assertions, instead of months worth of debugging trying to fix it [7].

Integration tests

At the Game Developers Conference 2019, Robert Masella presented test automation
using in-engine scripts [1]. Often, game engines have built-in tools for programming scripts
visually, or using simplified interpreted languages that do not require compiling the project,
and are executed in an already compiled project. They are often used by developers to write
specific passage scenarios, the so-called scripts. Scripts can also be used to automate testing.
When a script specifies behavior, and if it matches the expected behavior as a result, then the
test is considered successful.

Used as integration tests, since only individual mechanics are tested, most often one
by one test scenarios, and take an average amount of time. These scripts are often built into
CI/CD processes, where they regularly validate the written code or content. An example of

such a script can be seen in figure 6.

Blueprint for Integration Test

Figure 6. Sea of thieves integration testing [1]

36 ISSN 1560-8956

MiXBiZIOMUYHI HAYKOBO-TEXHIYHHUH 30ipHUK «AJANTHBHI CHCTEMH aBTOMAaTHYHOTO ynpasiiHHa» Ne 27 (47) 2025

End-to-End tests

To automate End-to-End (E2E) testing, i.e. tests at the top of the testing pyramid,
there is a need to increase the granularity of testing compared to integration testing. That is,
there is a need to test complete parts of the game, without human participation. This pairs
really well with assertions, which in combination can give high system resilience and bug
discoverability, mimicking Tigerbeetle’s simulation testing.

Methods of End-to-End testing widely vary from game to game, because the end
product can be vastly different and different levels of complexity require different
approaches to E2E testing. Some examples of prominent implementations of E2E testing
methods can be found in The Division 2 [8] and Retro City Rampage [9]. In Retro City
Rampage this approach helped to pass 9 simultaneous console certifications with just only
one QA covering all regression testing cases, which were not automated.

These methods allowed developers to test more than just game functioning:
performance, level design problems, player heat maps, greatly reduced costs of smoke and
regression testing.

Non-functional testing

In his talk at Games Gathering 2021[10], Serhiy Protsenko describes the use of
Reinforcement Learning algorithms to automate testing of casual and hyper-casual video
games. In addition to classic applications for functional testing, Serhiy also highlighted the
capabilities of Reinforcement Learning agents for testing other qualitative criteria by which
game quality can be assessed, such as balance and accessibility.

Also, Serhiy Protsenko in his talk highlights the possibility of using Reinforcement
Learning to synthesize new game levels. For this, Reinforcement Learning agents are trained
to different levels of player skills. Using hyperparameters to construct levels, it is possible to
generate levels of different difficulty using this method. An example of using
hyperparameters to generate levels can be seen in the fig. 7.

Level goals:
b [:step§’: '[20,21...30])
{‘special’: [2,3...5]} Generated
.......... levels
%
z <— Real levels
&
[=] .« 7% *
& . .
Seo e Generated
S levels
2
[
1 2 3 4 5 6 14 8] 10 " 12 13 14 15 16 7 8 19 20
Level game
B Human-like agent - RL agent 10M step « Real gamers

B Generated levels

Figure 7. Synthesis of new levels using RL agents [10]

ISSN 1560-8956 37

MiXBiZIOMUYHI HAYKOBO-TEXHIYHHUH 30ipHUK «AJANTHBHI CHCTEMH aBTOMAaTHYHOTO ynpasiiHHa» Ne 27 (47) 2025

Good balance results in games being more fun and exciting for the players [11]. This
approach to non-functional testing allows game designers to reduce iteration time and

balance games with more precision, enhancing quality of the product.

Modified test pyramid

From the sections considered, we can conclude that the classic testing pyramid does not
meet the needs and standards of the industry. Low levels of the pyramid don’t adapt to change
quickly enough, and high levels don’t cover the multidisciplinary nature of the field. And to fix
this, a new scheme was drawn up to systematize the testing approach. It consists of five layers,
unlike the usual three-layer pyramid. It has an additional layer on top and bottom. The lower
layer is responsible for assertions in the code at the smallest level of granularity to keep quality
top-notch on the lowest level possible, but retaining flexibility. The highest layer is responsible
for automating non-functional quality criteria, which can help with non-technical,

multidisciplinary aspects of the industry. The updated pyramid itself can be seen in the fig. 8.

Non-
functional
tests

E2E
tests

Integration
tests
/ Unit Tests \
/ Assertions \

Figure 8. Modified test pyramid

Use case

As an example of usage of this technology we can consider test automation of a
multiplayer shooter game.

Assertion level is covered in the code itself. Shooter games heavily rely on correct
shooting physics, so asserting in-depth physical calculations should give us a correct result.
And assertions help pinpoint the exact cause of the error.

Unit tests level covers distinct feature calls, getting a bit higher level of granularity,
than regular unit tests. So instead of setting up unit tests for each physics call, we should cover
more complex and complete scenarios, for example a test case shooting a bullet, from start to
finish, its physics calculations, collisions, etc. On one hand it shows us a realistic core game

38 ISSN 1560-8956

MiXBiZIOMUYHI HAYKOBO-TEXHIYHHUH 30ipHUK «AJANTHBHI CHCTEMH aBTOMAaTHYHOTO ynpasiiHHa» Ne 27 (47) 2025

scenario, so it generally should never change, and costs of supporting it should be minimal. On
the other hand it’s granular enough to find the reason for the problem, if this test fails.

Integration tests cover complete simulated in-game scenarios. For example running,
jumping, shooting lots of bullets in different conditions. It again steps up granularity and
highlights problems happening during systems interactions.

For E2E algorithmic testing bots are the best fit for the job. Full server with bots
starts and they play a full match. This helps with performance testing, load testing and heat
maps. Also covers the network part, where all bots can be connected with various levels of
network stability.

For non-functional testing the best fit are RL-agents, which will find various exploits
and disbalances. They could cover the balance edge cases of maps, weapons, strategies.

Why not combine non-functional and E2E testing then? Because RL agents are non-
deterministic, they need to be regularly retrained, and their learned strategy can skip over some
functional problems. Algorithmic bots show more deterministic results and you can have a
guarantee that a specific case is covered. For example there is a big event on map, where all
human players are most likely to participate. Algorithmic bots can be guaranteed to participate,
but if this event is poorly balanced and reward isn’t sufficient enough, RL bots will never
participate in it as intended. It can be viewed as algorithmic bots are the equivalent of smoke

checks, while RL-based non-functional testing covers edge cases and helps find disbalances.

Conclusion

The proposed approach for game automation addresses the disconnection between
the classic test automation approach and the real state of the video game industry.

Different levels of test granularity were researched. The resulting model consists of 5
test layers: assertions, unit tests, integration tests, E2E tests and non-functional tests. Lower
levels help with creating a robust technical foundation, while still being flexible and making
maintenance easier. Unit tests step up in granularity, making them easier to maintain, while
assertions cover the low level of implementation detail. The higher levels allow us to cover
the multidisciplinary part of the development and assess more complex non-functional
quality criterias such as performance, balance, and accessibility, improving overall non-
technical quality of software as well as technical.

With the help of the new test automation approach, we can speed up the development
and increase its efficiency. The test automation process can reach new qualitative levels, while
being easier to maintain, than classic software development test automation methods. The new
approach takes into account features of the game development process and addresses the need

for rapid change, while keeping the functional and non-functional quality high.

ISSN 1560-8956 39

MiXBiZIOMUYHI HAYKOBO-TEXHIYHHUH 30ipHUK «AJANTHBHI CHCTEMH aBTOMAaTHYHOTO ynpasiiHHa» Ne 27 (47) 2025

REFERENCES

1. Automated Testing of Gameplay Features in 'Sea of Thieves' https://youtu.be
/X673t0i8pU8?si=0yRdgDtSMPcK9muB (last accessed: 17.03.2025)

2. Martin Fowler. The Practical Test Pyramid. https://martinfowler.com/ articles/
practical-test-pyramid.html (last accessed 17.03.2025)

3. Kevin Dill. Where The $@*&% Are Your Tests?! https:/youtu.be/
IW519D]KT3U?si=bOfmtY QDHLWu-t7t (last accessed 17.03.2025)

4. Roy Osherove. The art of unit testing. https://www.artofunittesting.com/
definition-of-a-unit-test (last accessed 17.03.2025)

5. Tigerbeetle DBMS presentation https://youtu.be/sC1B3d9C sI?si=qWGkzBU
RrRR8NmzR (last accessed 17.03.2025)

6. Tigerbeetle code style https://github.com/tigerbeetle/tigerbeetle/blob/main/docs/
TIGER_STYLE.md (last accessed 17.03.2025)

7. Jamie Brandon. 0031: 2022, systems distributed, random ids, deleting

tombstones, disorderly compaction, juggling blocks, code review woes, holiday shutdown,

searching for implementors, everything is copy, sharing the page cache after fysncgate, 9/10
climbers, rise and fall of peer review, real-world concurrency https://www.scattered-
thoughts.net/log/0031 (last accessed 22.03.2025)

8. Automated Testing: Using AI Controlled Players to Test 'The Division'
https://www.gdcvault.com/play/1026382/Automated-Testing-Using-Al-Controlled (last accessed
17.03.2025)

9. Automated Testing and Instant Replays in Retro City Rampage https://youtu.be/
W20t1zCZv8M?si=rzEvScrCFw-6Cfsw (last accessed 17.03.2025)

10. Serhiy Protsenko - How human-like Al bots can take gaming to a new level
https://youtu.be/R-h93kDUNQk?si=6vir7svCYtwMY Yzk (last accessed 17.03.2025)

11. 4. Becker and D. Gorlich, “What is Game Balancing? - An Examination of

Concepts”, paradigmplus, vol. 1, no. 1, pp. 22-41, Apr. 2020.

40 ISSN 1560-8956

https://martinfowler.com/%20articles/%20practical-test-pyramid.html
https://martinfowler.com/%20articles/%20practical-test-pyramid.html
https://youtu.be/%20IW5i9DjKT3U?si=bOfmtYQDHLWu-t7t
https://youtu.be/%20IW5i9DjKT3U?si=bOfmtYQDHLWu-t7t
https://www.artofunittesting.com/%20definition-of-a-unit-test
https://www.artofunittesting.com/%20definition-of-a-unit-test
https://youtu.be/sC1B3d9C_sI?si=qWGkzBU%20RrRR8NmzR
https://youtu.be/sC1B3d9C_sI?si=qWGkzBU%20RrRR8NmzR
https://github.com/tigerbeetle/tigerbeetle/blob/main/docs/%20TIGER_STYLE.md
https://github.com/tigerbeetle/tigerbeetle/blob/main/docs/%20TIGER_STYLE.md
https://www.scattered-thoughts.net/log/0031
https://www.scattered-thoughts.net/log/0031
https://www.gdcvault.com/play/1026382/Automated-Testing-Using-AI-Controlled
https://youtu.be/%20W20t1zCZv8M?si=rzEvScrCFw-6Cfsw
https://youtu.be/%20W20t1zCZv8M?si=rzEvScrCFw-6Cfsw
https://youtu.be/R-h93kDUNQk?si=6vir7svCYtwMYYzk

	АСАУ_зірник статей
	Oliinyk_Korol
	Oliinyk_Zakharchyn
	Ахаладзе_Лісовиченко_Використання_ШІ_en
	Виправлено_Hazin_Test_Automation_Approach_for_Games_2
	Виправлено_Hrybenko_Improving_reinforcement_learning_for_complex
	Виправлено_Malenko_ASAC_Web3InAff_en_v2
	Виправлено_Manuscript 2025 V2
	Виправлено_Mykhailenko_Lobodzynskii_Chuniak_Demchuk
	Виправлено_Вітковська_Крамар_2
	Виправлено_Гусєва_Жураковська_Богданова
	Виправлено_ІС_42мп_Жигорін_керівник_Орленко_стаття
	Виправлено_Лемешко
	Виправлено_Муліш_Стаття_розподілений_транзакційний_годинник
	Виправлено_Стаття Луцак_Ткач (2)
	Виправлено_стаття_Шинкаренко_Богданова
	Павлов_Зенів
	Павлов_Кущ
	Прядченко_Ліхоузова
	Рекечинський_Волокита
	Ролік_Амонс_Ульяницька_Хмелюк_Цимбал
	Ролік_Смолій
	Ролік_Ульяницька_Амонс
	Стенін_Пасько_Дроздович_Лісовиченко
	Стенін_Пасько_Солдатова_Стенін_
	Шимкович_Чимшир_Знова_Ювженко_Гжегож_Новаковський_Теленик

	Зміст
	УДК_УКРАЇНА
	УДК_АНГЛІЯ

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 2
 Page size: same as page 3

 D:20250916161839

 Blanks
 Always
 2
 1
 1
 720
 221
 0
 1
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 3

 CurrentAVDoc

 SameAsPage
 BeforeCur

 QITE_QuiteImposingPlus5
 Quite Imposing Plus 5.3d
 Quite Imposing Plus 5
 1

 0
 2

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 3 to page 249; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 76.54 points, vertical 59.53 points
 Colour: Default (black)
 Prefix text: ''
 Suffix text: ''

 D:20250916162141

 1
 1

 BR

 1
 1
 1
 1
 1
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1395
 205
 0
 1
 R0
 12.0000

 Odd
 3
 SubDoc
 249

 CurrentAVDoc

 [Doc:FileName]
 76.5354
 59.5276

 QITE_QuiteImposingPlus5
 Quite Imposing Plus 5.3d
 Quite Imposing Plus 5
 1

 2
 249
 248
 c450f3ee-efdd-4866-8943-35fac3168dd0
 124

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 3 to page 249; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 76.54 points, vertical 59.53 points
 Colour: Default (black)
 Prefix text: ''
 Suffix text: ''

 D:20250916162149

 1
 1

 BL

 1
 1
 1
 1
 1
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1395
 205
 0
 1
 R0
 12.0000

 Even
 3
 SubDoc
 249

 CurrentAVDoc

 [Doc:FileName]
 76.5354
 59.5276

 QITE_QuiteImposingPlus5
 Quite Imposing Plus 5.3d
 Quite Imposing Plus 5
 1

 3
 249
 247
 54d97da7-d44a-4cf4-a90c-9c7e85b7e6e2
 123

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 250 to page 282; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 76.54 points, vertical 59.53 points
 Colour: Default (black)
 Prefix text: ''
 Suffix text: ''

 D:20250916165850

 1
 1

 BL

 1
 1
 1
 1
 1
 250
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1395
 205
 0
 1
 R0
 12.0000

 Even
 250
 SubDoc
 282

 CurrentAVDoc

 [Doc:FileName]
 76.5354
 59.5276

 QITE_QuiteImposingPlus5
 Quite Imposing Plus 5.3d
 Quite Imposing Plus 5
 1

 249
 282
 281
 a83e5597-45e4-4790-a8e2-2c4cad323233
 17

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 250 to page 282; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 76.54 points, vertical 59.53 points
 Colour: Default (black)
 Prefix text: ''
 Suffix text: ''

 D:20250916165906

 1
 1

 BR

 1
 1
 1
 1
 1
 250
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1395
 205
 0
 1
 R0
 12.0000

 Odd
 250
 SubDoc
 282

 CurrentAVDoc

 [Doc:FileName]
 76.5354
 59.5276

 QITE_QuiteImposingPlus5
 Quite Imposing Plus 5.3d
 Quite Imposing Plus 5
 1

 250
 282
 280
 5f81377f-d5f7-4845-acbd-2369e80f4863
 16

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 108 to page 118; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 76.54 points, vertical 59.53 points
 Colour: Default (black)
 Prefix text: ''
 Suffix text: ''

 D:20250917115231

 1
 1

 BL

 1
 1
 1
 1
 1
 108
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1395
 205
 0
 1
 R0
 12.0000

 Even
 108
 SubDoc
 118

 CurrentAVDoc

 [Doc:FileName]
 76.5354
 59.5276

 QITE_QuiteImposingPlus5
 Quite Imposing Plus 5.3d
 Quite Imposing Plus 5
 1

 107
 282
 117
 2ea668ee-e3c2-4097-855a-39c2a52ec43f
 6

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 108 to page 118; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 76.54 points, vertical 59.53 points
 Colour: Default (black)
 Prefix text: ''
 Suffix text: ''

 D:20250917115239

 1
 1

 BR

 1
 1
 1
 1
 1
 108
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1395
 205
 0
 1
 R0
 12.0000

 Odd
 108
 SubDoc
 118

 CurrentAVDoc

 [Doc:FileName]
 76.5354
 59.5276

 QITE_QuiteImposingPlus5
 Quite Imposing Plus 5.3d
 Quite Imposing Plus 5
 1

 108
 282
 116
 30e3ac48-7058-4b87-ae2c-ab760d6f846a
 5

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 283 to page 289; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 76.54 points, vertical 59.53 points
 Colour: Default (black)
 Prefix text: ''
 Suffix text: ''

 D:20250917115725

 1
 1

 BR

 1
 1
 1
 1
 1
 283
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1395
 205
 0
 1
 R0
 12.0000

 Odd
 283
 SubDoc
 289

 CurrentAVDoc

 [Doc:FileName]
 76.5354
 59.5276

 QITE_QuiteImposingPlus5
 Quite Imposing Plus 5.3d
 Quite Imposing Plus 5
 1

 282
 289
 288
 e7b6c71d-363b-431c-9871-51fec0c92e68
 4

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 283 to page 289; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 76.54 points, vertical 59.53 points
 Colour: Default (black)
 Prefix text: ''
 Suffix text: ''

 D:20250917115731

 1
 1

 BL

 1
 1
 1
 1
 1
 283
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1395
 205

 0
 1
 R0
 12.0000

 Even
 283
 SubDoc
 289

 CurrentAVDoc

 [Doc:FileName]
 76.5354
 59.5276

 QITE_QuiteImposingPlus5
 Quite Imposing Plus 5.3d
 Quite Imposing Plus 5
 1

 283
 289
 287
 83d2b669-627f-415d-a970-67206f33fe46
 3

 1

 HistoryList_V1
 qi2base

