
“АСАУ” – 13(33) 2008

UDC 004.02:004.832.2
O.I. Molchanovskiy, S. Nakhostin

USING ARTIFICIAL INTELLIGENCE METHODS TO
SOLVE BOSS PUZZLE (USING A SINGLE AGENT)

Introduction
In this report we tried to give a comprehensive, practical method for solving

the (n2 − 1) puzzle. It is assumed in advance that this algorithm is going to
be realized as a computer program in a Rule Based System.

The (n2 − 1) is the generalized form of the famous 15 puzzle and is the
subject of Ian Parberri’s paper under the title of: “A real time algorithm for
(n2 − 1) puzzle” [2] in which he uses a divide and conquer (D&C) approach to
rearrange a solvable grid position. A solvable grid position is the one with an
even permutation of moves from the beginning (initial) state to the goal state.

In 15-puzzle we have a 4x4 grid with 15 tiles numerated from 1 to 15 and a
hollow position to which we refer as space. The agent’s mission is to scramble
the grid and then start to rearrange it by moving the space in 4 directions
(moving the space is analogous to pushing the neighbor tiles into the space so
whenever we say move the space for example to the right it means that we
push the right neighbor of the space into the space’s position). As the result
we reach to the final arrangement of the grid which is shown in the Fig. 1.

Рис. 1 – Goal position of 15-puzzles

It is proven that half the number of all possible initial states, are led to the
final (goal) state. If we generate the initial state randomly we can then test
the evenness of the initial state (even permutation of moves from the initial
state to the goal state) to find out that the given grid configuration is solvable
or not. This test is represented in the Sam Loyd 15-puzzle paper written by
Richard Hayes [1].

The (n2 − 1) algorithm is based on two standard algorithm design techni-
ques: divide and conquer, and the greedy algorithm has the following
features:

• it is a real-time algorithm, that is, it generates a series of moves with
O(1) computation time required before the first move, and between each
successive move;

c© O.I. Molchanovskiy, S. Nakhostin , 2008

ISSN 1562-9945 55



“АСАУ” – 13(33) 2008

• it makes no more than 5 times more moves than necessary on the worst-
case configuration;

• it makes no more than 7.5 times more moves than necessary on average
configurations;

• it makes no more than 19 times more moves than necessary on random
configurations, with probability one (we follow the popular shorthand
of writing with probability one for a probability that approaches 1 as n
increases. In our case, the probability approaches 1 exponentially fast)
[2].

Here we are not going to peruse the Ian Parberry’s paper and eschew
getting involved with proving theorems which are used in his work. What
we are interested to represent is a complete algorithm (with all underlying
nuances) in a more practical approach to make us enable to build an intelligent
agent to scramble and solve all possible configurations of a grid with any
given dimension.

It is assumed that this algorithm is going to be realized in a rule-based
architecture, so being acquainted with the basic aspects of these architectures
is required.

The algorithm’s outline
We can divide the algorithm into 4 phases; each phase can be represented

by a separated function:
1) Getting the dimension of the grid.
2) Scrambling the grid and setting the initial state.
3) Test for even permutation.
4) Solving the puzzle for the initial state.

First phase

For this phase the dimension (size) of the grid is being defined using a
simple input function. This we can draw the grid with the given number of
rows and columns.

Second phase

Using a randomization function, the initial state of the grid from 1 to n
(grid dimension) is being generated.

Third Phase

Using a separated function, we can check the evenness of the initial state.
This function must have two sub functions.

1) For the state in which space is in its eventual (goal) position.
2) For the state in which space is not in its eventual (goal) position.

Forth Phase

This phase is composed of sub phases.
The fundamental approach to solve this part is based on Divide and

Conquer (D&C) method which is represented in Sam Loyd’s paper and we

56 ISSN 1562-9945



“АСАУ” – 13(33) 2008

implement it as the outermost function which is being used to sort the whole
grid (by frequently reducing the size of the grid).

Important point: in practice we can skip second and third phases by
scrambling the sorted grid manually.

This, we can be assure that our initial state is always solvable (even number
of permutations).

This process is being described further in this paper.
Attributes and features: there are some basic features we need to introduce

first, in order to describe each configuration of the grid during the process.
As we intend to use a rule based system in order to implement our algorithm,
these features are widely being used to define templates as well as defining
easy-to-understand facts which are the main units of data and help us to fire
rules during the execution of program.

Basic attributes which all tiles in grid posses:
1) Tile position – number of positions are between 1 and n2.
2) Tile caption – number of captions are between 1 and n2 − 1.
3) Tile column – varies between 1 and n.
4) Tile row – varies between 1 and n.
5) Tile neighbors – depending on the position of tile, varies between 3 (on

corners) and 8.
6) Marginality – with the value of 1 (true) for marginal tile and 0 (False)

for none marginal.
7) Main diagonal – with the value of 1 to diagonal tile and 0 to none

diagonal.
8) Fixed/Unfixed – with the value of 1 for fixed tile, row or column and 0

for unfixed ones.
Here “n” is the dimension of the board. Attributes 1 to 4 are shown in the

Fig. 2.

Рис. 2 – Attributes of a tile

Neighbors

We have two types of neighborhood forward neighbors and diagonal nei-
ghbors.

Forward neighbors

Each tile has up to 4 forward neighbors. Here we have the tile “T” which
has four forward neighbors (n1 ,n2 ,n3 ,n4):

Column(n1) = Column(T ), Row(n1) = Row(T ) − 1
Column(n2) = Column(T ), Row(n2) = Row(T ) − 1
Column(n3) = Column(T ) − 1, Row(n3) = Row(T )
Column(n4) = Column(T ) + 1, Row(n4) = Row(T )

ISSN 1562-9945 57



“АСАУ” – 13(33) 2008

We can see the forward neighbors of “T” in Fig. 3.

Рис. 3 – Forward Neighbors

Diagonal neighbors

Each tile has up to 4 diagonal neighbors. Here we have the tile “T” which
has four diagonal neighbors (n1, n2, n3, n4):

Column(n1) = Column(T ) − 1, Row(n1) = Row(T ) − 1
Column(n2) = Column(T ) − 1, Row(n2) = Row(T ) + 1
Column(n3) = Column(T ) + 1, Row(n3) = Row(T ) + 1
Column(n4) = Column(T ) + 1, Row(n4) = Row(T ) − 1

We can see diagonal neighbors of “T” in Fig. 4.

Рис. 4 – Diagonal Neighbors

Marginality

Marginal tiles are those who have placed on the outermost columns (or
rows). We can see this in Fig. 5.

Important point

Maximum number of tiles neighbors is 8, and different tiles depending
on their locations could have fewer neighbors. Marginal tiles always have
less than 8 neighbors and those which are placed in the corners have only 3
neighbors.

Main Diagonal

Set of all tiles with the same number of column and row is called main
diagonal.

Each tile on the main diagonal has its corresponding attribute (main di-
agonal) set to 1 (true) and the rest of tiles have 0 (falls).

58 ISSN 1562-9945



“АСАУ” – 13(33) 2008

Рис. 5 – Marginal tiles

Рис. 6 – Main diagonal

Columns or rows which have all their tiles sorted as the goal state
arrangement are called fixed columns (rows). We can not change the
arrangement of these columns (rows) during solving the rest of the grid
(this is the main rule of divide and conquer) Fig. 7.

Fixed Tile

Tiles which are placed on a sorted column (row) are called fixed tiles.

Рис. 7 – Fixed Column/Row

Important point

During the sorting process there may be some tiles which indiscriminately
placed on their home position. In these cases the agent is allowed to move them
from their position, as they are not located in the current column (row) which
is under the sorting process.

Mirror Effect
In order to sort each column of the grid the agent needs to take similar

steps as it took in order to sort the rows. In another word, the agent uses
the same algorithm to sort columns as well as rows. Mirror effect is an inline
function which can be used to refer to each column as a row during solving the
puzzle by replacing the grids counterpart tiles according the main diagonal.

ISSN 1562-9945 59



“АСАУ” – 13(33) 2008

This is to consider each column as a row during sorting columns.
Each time we start to sort a new column we can exchange their counterpart

row in order to simplify the process of sorting tiles. This enables us to refer
each column as a row and use the same rules for columns and rows.

Divide and Conquer Algorithm
We can observe the general approach of the divide and conquer which

frequently reduces the grid into a smaller one in the Fig. 8.
Here we represent the algorithm of D&C in pseudo code:
i:=1;
//Sort i-th ROW
2 Adjust Row (i)
Mirror Effect
//Sort i-th Column
Adjust Column (i)
Mirror Effect
i:=i+1;
if i=n then Finish
else goto 2

Рис. 8 – The process of D&C

Let’s Start
Assume that we already have the shuff led grid and our agent is ready to

solve the puzzle. First of all we need an inspector to locate space, target and
home.

Space
Space is the tile which we move through the grid in order to change the

configuration of it.
Target
Target is the tile which its caption and position are not the same numbers.

The agent has to place target into the position that is equal to the caption of
the target.

Home
This is the final position of each target.

Universal Rule
We are not allowed to move sorted tiles. There are several different confi-

gurations which can occur, after locating space, target and home and each
can dramatically change the strategy of the agent.

60 ISSN 1562-9945



“АСАУ” – 13(33) 2008

We magnify all these different configurations and use all of them in order
to give a complete routing strategy.

By identifying the locations of space, target and home we have column,
row and position of each of them.

Routing strategy
Very important issue, we must consider, each time before moving the space

is to answer these questions:

1. Where is the destination of space?

2. Which way to chose?

Destination of space

1. To get nearer to target (if it is not currently located in the targets nei-
ghborhood).

2. To move around the target in order to find the best position.

3. The best position is the one which allows the target to get nearer to home.

“Diagonal neighbors” rule
Space can not exchange its location with the diagonal neighbors.
“Home and space in different columns” rule
We have to first move the space into the neighborhood of the target and

locate it in the position between the target and home. If the circumstance
allows, it would be preferred to move the space directly to this position (by
this we can reduce the amount of moves).

Choosing direction
There are some fixed actions which space takes in order to move its target

in four directions.
“Up” rule
Not depending on the location of the space, “up” means to exchange the

caption of space and the tile above it.
“Down” rule
To exchange the caption of space and the tile bellow it.
“Left” rule
To exchange the caption of space and the tile locating on the left side of

space.
“Right” rule
To exchange the caption of space and the tile locating on the right side of

space.
“Swap” rule
After locating the space, up, down or next to the target we have to push the

target into its new place which is space’s current position; in another word we
swap the caption of space and target.

“Semi circle” rule
After exchanging the captions of space and target, and getting nearer to

the home position, as we can see in the figures below the same order of actions

ISSN 1562-9945 61



“АСАУ” – 13(33) 2008

Рис. 9 – Semi circle rule

must be repeated until the target can be placed next to the home position .in
the case shown in Fig. 9 we have “down”, “left”, “left”, “up”.

“Last tile” rule
There is a fixed strategy for sorting the last two tiles of each row or

column:

1. put the (n− 1) in the position of (n);

2. put the (n) below the (n− 1);

3. push (n− 1) left in its original position;

4. push (n) up in its original position.

Special row configuration
There is one configuration in which the above algorithm is unable to work

properly; we can see this configuration in the Fig. 10.

Рис. 10 – Special configuration

To fix this configuration we can use a predefined set of moves in order to
get last two tiles out of their position and rearrange them properly. We assume
that space is situated under the last tile as it depicted in Fig. 10. Obviously
for other positions space have to take additional steps: “left”, “up”, “right”,
“down”, “down”, “left”, “up”, “right”, “up”, “left”.

Conclusion
This paper concisely represents the essential knowledge which is needed

for a single agent in order to solve the (n2 − 1) puzzle. As it mentioned at the
beginning of the paper, solving this problem (which is somehow stands under

62 ISSN 1562-9945



“АСАУ” – 13(33) 2008

the combinatorial problems) we intended to use an AI approach to develop the
agent and design a knowledge base for it in order to study how Artificial
Intelligence techniques can help us to cope with computer science problems
in a more efficient way.

Implementing this algorithm in a cognitive architecture like CLIPS or
SOAR can be the subject of a separated paper.

Bibliography
1. 1) Hayes Richard. The Sam Loyd 15-Puzzle //

http://citeseer.comp.nus.edu.sg/487673.html

2. 2) Parberry Ian. A real-time algorithm for the (n2−1)-puzzle // Informati-
on Processing Letters. Vol. 56, 1995. Pp. 23-28.

Получено 06.11.2008

ISSN 1562-9945 63


