УДК 621.924.229.86

А.Г. Кику, Е.Ю. Рева

СИНТЕЗ ФИЛЬТРОВ ПЕРЕМЕННЫХ СОСТОЯНИЯ НА ОСНОВЕ ОЦЕНОК РАССОГЛАСОВАНИЯ НАЧАЛЬНЫХ УСЛОВИЙ

Статья посвящена повышению эффективности фильтрации переменных состояния динамических объектов на основе использования оценок рассогласования начальных условий объекта и фильтра для компенсации их влияния на качество искомых оценок. Приведен общий подход синтеза улучшенных фильтров переменных состояния и результаты его компьютерного моделирования, демонстрирующие значительное преимущество предложенных фильтров относительно стандартных фильтров Калмана.

Анализ калмановского подхода фильтрации переменных состояния

Как известно, в калмановской постановке задач фильтрации переменных состояния к оценкам $\hat{x}(t)$ переменных x(t) вдвигаются требования их несмещенности и эффективности, а к процедуре фильтрации — ее линейность. На основе этих требований классическая постановка задачи фильтрации переменных состояния, разработанная Калманом, имеет следующий вид:

$$\hat{x}^* = \arg\{\frac{\min}{L, K, B_{\phi}} \text{tr} P_{\varepsilon} \middle| \begin{cases} \dot{x}(t) = A(t)x(t) + Bu(t) + G(t)w(t); \\ y(t) = C(t)x(t) + D(t)v(t); \\ M\hat{x} = Mx(t), Mw(t) = 0, Mv(t) = 0; \\ Cov[w(t), w(\tau)] = Q_w \delta(t - \tau), Cov[v(t), v(\tau)] = \\ = R_w \delta(t - \tau); \\ Cov[w(t), v(\tau)] = 0, Cov[w(t), \hat{x}(0)] = 0 \\ Cov[\hat{x}(0), \hat{x}(0)] = P(0), \\ \dot{x}(t) = L\hat{x}(t) + Ky(t) + B_{\phi}u(t) \end{cases}$$
(1)

где \hat{x}^* — оптимальная оценка переменных состояния, $\operatorname{tr} P_{\varepsilon}(t)$ — след ковариационной матрицы $P_{\varepsilon}(t)$ ошибки $\varepsilon(t)=x(t)-\hat{x}(t)$ фильтрации, A(t), B(t), G(t) — соответствующие матрицы уравнения состояния объекта, C(t) — матрица выхода объекта, M, Cov- операторы математического ожидания и ковариации, w(t), v(t) — соответственно "белые" помехи на входе и выходе объекта, δ — функция Дирака, L(t) — матрица состояния фильтра, $B_{\phi}^{(t)}(t)$ — матрица входа фильтра по u(t), K(t)—матрица входа по y(t)(матрица усиления фильтра). Последнее условие в наборе ограничений задачи (1) выражает требование линейности процедуры фильтрации.

⁰ (с) А.Г. Кику, Е.Ю. Рева, 2007

ISSN 1562-9945 63

При "небелых" помехах $w(t),\,v(t)$ в постановку задачи вносятся соответствующие операторы их "отбеливания".

Как видно в указанной постановке отсутствует влияние рассогласования $\varepsilon(0)=x(0)-\hat{x}(0)$ начальных условий переменных состояния и их оценок на качество фильтрации. Этот недостаток приводит в конечном итоге к тому, что синтезируемый на ее основе фильтр оказывается неоптимальным. Действительно, ввиду того, что фильтр Калмана представляет собой линейный оператор, наличие рассогласования начальных условий $\varepsilon(0)=x(0)-\hat{x}(0)$ порождает в нем составляющую

$$\hat{x}_{\varepsilon(0)}(t) = e^{Lt} \varepsilon(0) = \Phi(t) \varepsilon(0) \tag{2}$$

Отметим, что эта составляющая регулярна по структуре и эффективность ее "подавления" фильтром не является оптимальной, как и эффективность подавления влияния помех w(t) и v(t). Указанное обусловлено полной "структурной" корреляцией составляющей $\hat{x}_{\varepsilon(0)}(t)$.

Как известно, с "течением" времени после выхода на стационарный режим фильтр Калмана, например, для стационарных объектов представляет собой по существу фильтр Винера. Это вытекает из того, что ковариационная матрица $P_{\varepsilon}(t)$ ошибки фильтрации, а значит и матрица K(t), при $t \to \infty$ становится постоянной. Аналогичный эффект имеет место и для нестационарных объектов. Отсюда вытекает, что преимущество калмановской фильтрации над винеровской должно проявляться в интервале выхода процесса фильтрации на стационарный режим. Выход же фильтра на стационарный режим имеет место после "исчезновения" влияния рассогласования начальных условий $\varepsilon(0) = x(0) - \hat{x}(0)$ на процесс фильтрации. Отсюда вытекает, что неучет рассогласования начальных условий переменных состояния объекта и их оценок на фильтре представляет собой принципиальный недостаток калмановской постановки задачи фильтрации. Действительно, как показали авторы статьи в [1], фильтры, синтезируемые с учетом рассогласования начальных условий переменных состояния объекта и их оценок на фильтре, обладают значительно большей эффективностью по сравнению с эффективностью фильтров Калмана.

Эффективная фильтрация переменных состояния необходима как при решении задач определения оценок переменных состояния, так и для синтеза оптимальных регуляторов объектов при неизвестных переменных состояния и наличии помех. В последнем случае использование фильтров Калмана приводит к неоптимальности регуляторов и в теоретическом плане - к несправедливости известной теоремы разделения.

Корректная постановка задачи фильтрации переменных состояния

Вышеприведенный анализ калмановского решения задачи фильтрации показывает, что для улучшения качества оценок переменных состояния необходима более корректная, чем калмановская, постановка задач

64 ISSN 1562-9945

фильтрации, которая при тех же требований к оценкам в наборе ограничений учитывала бы влияние рассогласования начальных условий переменных состояния объекте и фильтра. Подобная постановка была предложена в [1] и имеет следующий вид:

$$\hat{x}^* = \arg\{\frac{\min}{L,K,B_{\phi}}[\sigma_{\varepsilon(0)}^2 + \text{tr}P_{\varepsilon}] \begin{vmatrix} \dot{x}(t) = A(t)x(t) + Bu(t) + G(t)w(t); \\ y(t) = C(t)x(t) + D(t)v(t); \\ M\hat{x} = Mx(t), Mw(t) = 0, Mv(t) = 0; \\ Cov[w(t), w(\tau)] = Q_w\delta(t - \tau), Cov[v(t), v(\tau)] = \\ = R_w\delta(t - \tau); \\ Cov[w(t), v(\tau)] = 0, Cov[w(t), \hat{x}(0)] = 0 \\ Cov[\hat{x}(0), \hat{x}(0)] = P(0), x(0) - \text{не известно}, \\ \dot{\hat{x}(t)} = L\hat{x}(t) + Ky(t) + B_{\phi}u(t) \end{vmatrix}$$
(3)

где $\sigma^2_{\varepsilon(0)}$ – дисперсия оценок, обусловленная рассогласованием начальных условий $\varepsilon(0)=x(0)-\hat{x}(0)$.

Как и в калмановской постановке, если помехи $w(t),\,v(t)$ "не белые", то в постановке должны быть внедрены соответствующие операторы отбеливания.

Алгоритм решения задачи фильтрации переменных состояния на основе преложенной ее постановке

В работе [1] был рассмотрен вариант решения указанной задачи на основе компенсации влияния рассогласования $\varepsilon_1(0)=x_1(0)-\hat{x}_1(0)$ только начальных условий первых наиболее важных составляющих $x_1(0)$, $\hat{x}(0)$ векторов переменных состояния и их оценок. При этом в качестве информации о значении $x_1(0)$ была использовано его оценка, равная $\hat{x}_1(0)=y(0)$. В указанной работе было показано, что такой подход позволяет значительно улучшить эффективность искомых оценок переменных состояния.

В данной работе предлагается вариант компенсации рассогласования начальных условий всех компонент векторов переменных состояния и их оценок. При этом в качестве информации значениях $x_i(0)$, $i\in\overline{1,n}$ предлагается использовать их оценки $\hat{x}_i(0)_{\Delta t}$, $i\in\overline{1,n}$, полученные на основе информации, содержащейся в реализации $y(t)_{\Delta t}$ в интервале времени $\overline{[0,\Delta t]}$. При этом оценки $\hat{x}_i(0)_{\Delta t}$, $i\in\overline{1,n}$ могут быть получены любым статистическим методом, например, методом наименьших квадратов, сглаживающей фильтрации определенного порядка и др.

Структурная схема предложенного подхода фильтрации переменных состояния представлена на рис. 1, где БООНУПСО — блок определения оценок начальных условий переменных состояния объекта, БПНУПСФ — блок перестройки начальных условий переменных состояния фильтра.

Таким образом, процедура синтеза фильтра переменных состояния на основе предложенного подхода содержит следующие этапы:

ISSN 1562-9945 65

- Синтез стандартного фильтра Калмана на основе постановки задачи фильтрации (1);
- 2. Синтез блока определения оценок начальных условий переменных состояния объекта на основе выбранной процедуры оценивания.
- Синтез блока перестройки начальных условий переменных состояния фильтра.

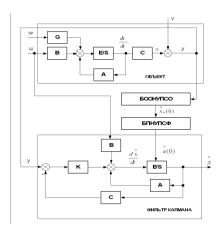


Рис. 1 – Структурная схема системы фильтрации

Экспериментальные исследования теоретических результатов

Экспериментальные исследования теоретических результатов предложенного подхода синтеза фильтров переменных состояния были выполнены путем их компьютерного моделирования в стандартной среде *MathCAD 13*.

Экспериментальные исследования были выполнены для объекта второго порядка, описываемого векторно-матричной моделью

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -2 & -4 \end{bmatrix} x + \begin{bmatrix} 0 \\ 4 \end{bmatrix} u + \begin{bmatrix} 0 \\ 1 \end{bmatrix} w
y = \begin{bmatrix} 1 & 0 \end{bmatrix} x + v$$
(4)

при u(t)=1(t), "белых" помехах v(t), w(t) с интенсивностями $Q_w=2$, $R_v=2$ и начальных условиях переменных состояния объекта и фильтра, равными соответственно $x_1(0)=0$, $\hat{x}_1(0)=2$, $x_2(0)=0$, $\hat{x}_2(0)=-2$. Рассогласование $\varepsilon(0)=x(0)-\hat{x}(0)$ принадлежало нормальному центрированному распределению вероятности с дисперсией $\sigma_{\varepsilon(0)}^2=4$. При выполнении экспериментальных исследований были использованы выборки объёма N=100.

66 ISSN 1562-9945

Результаты полученных исследований приведены на рисунках 2—4. Обычными линиями указаны переменные состояния, точечными — калмановские оценки, пунктирными — оценки, полученные предложенными фильтрами.

Рисунок 3 относится к первой переменной состояния и её оценке. Рисунок 4 относится ко второй переменной состояния и её оценке.

На рисунках а) приведены результаты, полученные при компенсации рассогласования начальных условий на всём интервале фильтрации, на рисунках б) - при интервале компенсации, равном [0,1], на рисунках с) – при интервале компенсации, равном [0,0.1].

В качестве критерия эффективности оценок, полученных предложенным фильтром использованы отношения $\frac{Q_K^i}{Q_Y^i}$, i=1,2, где Q – усреднённая сумма квадратов отклонений переменных состояний от их оценок, Q_Y , Q_K – значения критерия эффективности улучшенной по отношению к калмановской фильтрации, i – индекс координат вектора переменных состояния. Некоторые результаты экспериментальных исследований приведены на рис 2–4.

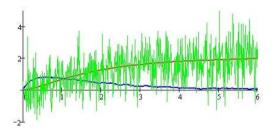


Рис. 2 – Выходная величина объекта без и с помехой

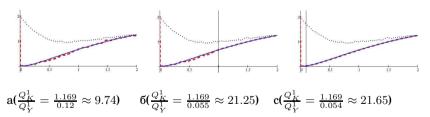
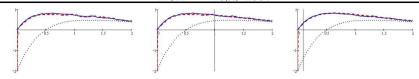



Рис. 3 – Графики первой переменной состояния, её калмановской оценки и улучшенной оценки

Выводы

На основе полученных результатов могут быть сделаны следующие убедительные выводы:

ISSN 1562-9945 67

$$\mathbf{a}(\frac{Q_K^2}{Q_V^2} = \frac{1.152}{0.111} \approx 10.38) \quad \mathbf{6}(\frac{Q_K^2}{Q_V^2} = \frac{1.152}{0.046} \approx 25.04) \quad \mathbf{c} \ (\frac{Q_K^2}{Q_V^2} = \frac{1.152}{0.045} \approx 25.6)$$

Рис. $4 - \Gamma$ рафики второй переменной состояния, её калмановской оценки и улучшенной оценки

- 1. Стандартные фильтры Калмана неоптимальны.
- 2. Неоптимальность фильтров Калмана обусловлена некорректностью калмановской постановки задачи фильтрации, которые не позволяют учитывать влияние рассогласования начальных условий переменных состояния объекта и фильтра.
- 3. Учёт влияния рассогласования начальных условий переменных состояния объекта и фильтра в постановке задачи фильтрации позволяет синтезировать более эффективные, чем калмановские фильтры переменных состояния.
- 4. Предложенный подход синтеза фильтров переменных состояния приводит к значительно более эффективным оценкам по сравнению с эффективностью оценк, полученных стандартными фильтрами Калмана.

Литература

- Kalman R.E. The theory of Optimal Control and the Calculus of Variations. Mathematical Optimization Techniques // Univercity of California Press, Berkeley 1963.
- 2. А.Г.Кику. Улучшение калмановской фильтрации переменных состояния // Адаптивные системы автоматического управления.-2003.- 6 (26).
- 3. А.Г.Кику, Е.Ю.Рева. Компенсация влияния рассогласования начальных условий фильтров переменных состояния // Адаптивные системы автоматического управления.-2006.- 9 (29).

68 ISSN 1562-9945