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Abstract: This paper presents an experimental evaluation of Retrieval-Augmented 

Generation (RAG) components for developing an intelligent support chatbot capable of 

processing complex documents. The study examines multiple frameworks, vector databases, 

and text-chunking strategies to determine the optimal configuration ensuring accuracy, 

contextual completeness, and efficiency. Results show that the LangChain framework 

achieves higher accuracy and context coverage than LlamaIndex, while FAISS provides 

superior answer relevancy, faithfulness, and processing speed. A chunk size of 1000 with an 

overlap of 50 yields the best balance between precision, recall, and response time. The 

combination of LangChain, FAISS, and the 1000/50 chunking configuration establishes a 

robust foundation for a high-performance RAG-based chatbot delivering accurate, faithful, 

and contextually relevant responses. 

Keywords: Retrieval-Augmented Generation, LangChain, LlamaIndex, FAISS, 

chatbot, vector database, context retrieval, chunking strategy, LLM. 

Introduction 

Modern natural language processing technologies, particularly large language models 

(LLMs), open new possibilities for developing intelligent support chatbots [1,2]. The 

Retrieval-Augmented Generation (RAG) approach, which combines text generation with the 

retrieval of relevant information, enables more accurate and context-aware responses 

compared to traditional models [3,4]. However, the effectiveness of RAG systems depends on 

the proper configuration of their components, which directly influences the quality and speed 

of query processing. 

This paper investigates the impact of key components of RAG systems, including 

frameworks, vector databases, and text chunking parameters, on the performance of support 

chatbots. Experiments were conducted using domain-specific documents such as insurance 

contracts, with evaluation metrics designed to assess the relevance, factual accuracy, and 

contextual completeness of generated responses. 

The objective of this study is to identify efficient configurations of RAG systems for 

developing automated support chatbots capable of handling complex queries in domains such 

as insurance, healthcare, e-commerce, and technical support. Performance is evaluated based 

on accuracy, completeness, factual consistency, relevance, and response time–factors that are 

critical for ensuring high-quality, user-oriented interactions. The results of this study 
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contribute to the formulation of practical recommendations for improving user service quality 

by delivering precise and timely responses. 

Related research and publications 

Research on Retrieval-Augmented Generation (RAG) has confirmed its effectiveness 

for natural language processing tasks, particularly in support chatbots [1,4]. In [5] the concept 

of RAG was introduced as an integration of parametric memory (language model) with non-

parametric memory (vector database), emphasizing the importance of retrieval part that has 

significant impact on the accuracy and factual consistency of generated responses. The study 

in [3] systematizes existing RAG approaches, identifying key components–retrieval, 

generation, and augmentation–and emphasizing the role of frameworks such as LangChain in 

simplifying their integration. 

The research in [6] highlights the impact of including multi-query in the retrieval phase, while 

the work in [7] focuses on optimizing text chunking strategies, showing that parameters such 

as chunk size and chunk overlap affect the balance between retrieval accuracy and contextual 

completeness. 

These studies highlight the necessity of carefully tuning RAG components to ensure 

high-quality responses in dialogue systems. The decision to investigate frameworks, vector 

databases, and text chunking parameters (chunk size, chunk overlap) in the present work is 

based on the findings of these prior studies. Frameworks were selected for analysis due to 

their ability to optimize the integration of retrieval and generation components, which is 

critical for support chatbots, as discussed in [3]. Vector databases are examined for their 

influence on retrieval speed and precision, as noted in [5], particularly when processing 

complex documents such as insurance contracts. Finally, the parameters chunk size and chunk 

overlap were chosen for analysis because, as shown in [7, 8], they directly affect contextual 

quality and completeness – factors essential for ensuring response relevance. 

A comprehensive examination of these components enables the formulation of 

recommendations for designing highly efficient RAG-based systems tailored to the 

requirements of support chatbots across diverse domains. 

Proposed solution 

For the development of the support chatbot system, the RAG model shown in Figure 1 

was defined. The proposed model includes two main components, described below. 

1. Data Preparation 

 Raw Data Sources: Data is obtained from text files or other document formats. 

 Information Extraction: Relevant information is extracted for further processing. 

 Chunking: Data is divided into smaller, manageable parts suitable for analysis. 
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 Embedding: Logical data segments are encoded into vector representations for 

storage in a vector database. This enables the system to identify semantic 

similarities between user queries and stored data. 

 

Figure 1. Architecture and Workflow of the RAG System 

2. Query Processing 

 Query: The user submits a request to the system. 

 Embedding: The query is converted into a vector representation. 

 Vector Database: The vector database retrieves the most relevant data segments 

based on the query. 

 Relevant Data: Retrieved data fragments are passed to the generation component. 

 Large Language Model (LLM): The LLM processes the user’s query together with 

the retrieved data to generate a personalized and contextually relevant response. 

 Response: The generated response is returned to the user. 

This RAG system workflow is used as the foundation for the conducted experiments. 

Description of Components for Investigation 

1. Framework Selection. Developing a RAG-based support chatbot requires selecting 

an appropriate framework optimized for retrieval and language model integration. Two widely 

used frameworks were considered: LangChain and LlamaIndex, both designed to facilitate 

interaction with large language models and retrieval pipelines. 
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Table 1. 

Parameter Combinations of Chunk Size and Chunk Overlap Used in the Experiment 

Characteristic 
InMemory 

VectorStore 
Chroma FAISS LanceDB 

Storage Type In-memory 
Local 

storage 

Local (with optional 

disk integration) 

On-disk with 

scalability support 

Access Speed Very high High 
High (especially with 

GPU acceleration) 
High 

Scalability Limited Limited High High 

Multimodality 

Support 
No Yes Partial Yes 

 

LangChain is a framework for building systems powered by language models. Its 

main advantage is the ability to structure data processing into chains, which ensures context 

preservation throughout the dialogue. LangChain supports integration with various data 

sources, including knowledge bases and APIs, making it highly effective for RAG 

applications where response accuracy and relevance are crucial. 

LlamaIndex is a data indexing and retrieval tool that leverages vector representations 

for efficient information access. Its primary strength lies in optimizing the process of 

retrieving relevant data and passing it to the language model. This enhances response 

precision in RAG systems, particularly when working with large volumes of textual 

information. 

2. Vector Database Selection. The choice of vector database significantly affects the 

quality of chatbot responses. Therefore, several popular databases with distinct characteristics 

and scalability options were selected for comparison. The comparative characteristics of the 

chosen databases are summarized in Tab. 1. 

3. Chunking Parameter Configuration. Four configurations of the parameters chunk 

size (maximum length of a text fragment) and chunk overlap (the degree of overlap between 

adjacent chunks to preserve textual coherence) were selected for testing. These 

configurations, presented in Tab. 2, enable the evaluation of how different parameter 

combinations affect the quality and consistency of generated responses. 

Experimental results 

Gemma 3 models, which operate solely on text input (no direct visual features), 

achieved higher top-1 scores – up to 71.25% (27B) – and up to 95% top-3 accuracy, although 

at the cost of significantly higher inference times (up to 6.9 seconds). 
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Table 2. 

Parameter Combinations of Chunk Size and Chunk Overlap Used in the Experiment 

No Chunk 

Size 

Chunk 

Overlap 

Description 

1 500 50 Small chunks with minimal overlap – used to assess the risk of 

context loss caused by excessively short text fragments. 

2 1000 50 Medium chunk size with minimal overlap – used to examine 

whether limited overlap provides sufficient contextual continuity. 

3 1000 200 Medium chunk size with moderate overlap – used to evaluate the 

balance between contextual completeness and processing 

efficiency. 

4 1500 500 Large chunks with high overlap – used to analyze performance for 

long document fragments where context preservation is critical. 

 

The study and selection of the RAG system components described above aim to 

identify the most effective solutions for implementing a support chatbot. 

Evaluation Metrics 

RAGAs is a framework designed to provide a comprehensive evaluation of RAG 

systems, encompassing both individual components and the overall process. Its key advantage 

lies in reference-free evaluation, which leverages large language models (LLMs) instead of 

manually annotated datasets, thereby making the assessment process faster and more cost-

efficient. 

RAGAs requires several inputs for operation: a question, answer, contexts, ground-

truth responses, and file search results. This enables efficient evaluation of response relevance 

and accuracy. Ground-truth responses in this study were obtained using the OpenAI 

Assistants API, which integrates seamlessly with applications and supports tools for file 

retrieval, code interpretation, and query handling. 

RAGAs also supports annotated metrics and automatic generation of test data, making 

it an effective framework for assessing the response quality of RAG-based systems. 

The following metrics were selected for system evaluation: 

1. Context Precision – measures the ratio of useful information to noise within 

retrieved contexts. 

2. Context Recall – assesses whether the retrieved contexts contain all necessary 

information. 

3. Faithfulness – evaluates the factual consistency of the response with the retrieved 

contexts. 

4. Answer Relevancy – measures how well the generated answer addresses the user’s 

query in terms of completeness and accuracy. 
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5. Answer Semantic Similarity – quantifies the semantic similarity between the 

generated response and the ground-truth answer. 

6. Response Time – measures the latency of answer generation. 

All metrics are normalized within the range [0, 1], where higher values indicate better 

performance. 

Experimental Setup 

To conduct the experiments, evaluation functions for the respective RAG system 

components were implemented. An insurance contract from an open public dataset was 

chosen as a test document. 

Experiment No. 1 

Two basic question–answer (Q&A) systems were implemented using the LangChain 

and LlamaIndex frameworks. 

Both systems were tested with identical queries based on the selected document, and 

their responses were evaluated using the predefined metrics: Context Precision, Context 

Recall, Faithfulness, Answer Relevancy, Answer Semantic Similarity, and Response Time. 

For convenience of comparison, the average values of all metrics were calculated for 

each system. The summarized results are presented in Tab. 3. Subsequent experiments report 

only the mean values of metrics. 

Table 3. 

Average performance metric values for LangChain and LlamaIndex frameworks 

Framework Relevancy Faithfulness  Context 

recall 

Context 

precision 

Semantic 

Similarity 

Elapsed 

time 

LangChain 0.96362 0.808404 0.843333 0.788889 0.890264 3.60444 

LlamaIndex 0.69379 0.829048 0.711429 0.75 0.877473 1.51861 

 

Based on the obtained evaluation results, LangChain is the most suitable choice for 

tasks where accuracy, relevance, and context completeness are of primary importance. Its 

answer relevancy score reached 0.96362, which is significantly higher compare to 

LlamaIndex (0.69379). Furthermore, the context recall metric for LangChain was noticeably 

superior, indicating that LangChain provides broader coverage of the relevant information. 

These metrics collectively demonstrate that LangChain is better suited for applications where 

high-quality, detailed responses are essential. 

Conversely, LlamaIndex showed a considerable advantage in terms of response time, 

achieving an average of 1.51861 seconds, compared to 3.60444 seconds for LangChain. This 

higher speed makes it more effective for interactive or time-critical scenarios, where rapid 

response generation is a key requirement. Additionally, the faithfulness metric for LlamaIndex 

was slightly higher (0.829048 versus 0.808404 for LangChain), suggesting a lower risk of 

factual inaccuracies in the generated responses. 

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1  (48) 2026

 ISSN 1560-8956 25



Overall, for support chatbots that process contractual documents and must ensure both 

accuracy and contextual completeness, LangChain represents better framework due to its 

strong performance across the most critical quality metrics. However, in scenarios where 

processing speed is the dominant factor, LlamaIndex may be a more appropriate choice, 

particularly for simpler queries or high-throughput environments. 

Experiment No. 2 

Based on the findings of the first experiment, LangChain was identified as the most 

optimal framework. Consequently, all subsequent Q&A system implementations were 

developed using this framework as the foundation. 

In the second study, the vector database was selected as the variable parameter. Responses 

were generated using each of the previously described vector databases, and the resulting outputs 

were evaluated. Average metric values were calculated and summarized for analysis. 

For comparative purposes, additional results obtained using the InMemoryVectorStore 

were also included. The summarized outcomes of this evaluation are presented in Tab. 4. 

Table 4. 

Average performance metric values for different vector databases 

Database Relevancy Faithfulness  Context 

recall 

Context 

precision 

Semantic 

Similarity 

Elapsed 

time 

InMemoryVec

torStore 

0.96362 0.808404 0.843333 0.788889 0.890264 3.60444 

Chroma 0.750281 0.858274 0.7 0.755556 0.876092 3.11018 

FAISS 0.965183 0.866667 0.9 0.8 0.890555 2.76104 

LanceDB 0.933294 0.79 0.9 0.816667 0.893194 3.00584 

 

Among the evaluated vector databases, FAISS demonstrated the best overall 

performance. It achieved the highest scores in answer relevancy (0.965183), faithfulness 

(0.866667), and context recall (0.9), while also providing the fastest response time (2.76104 

seconds). These results make FAISS the optimal choice for tasks that require a balance of 

accuracy, reliability, and computational efficiency. 

The InMemoryVectorStore exhibited strong results in answer relevancy (0.96362) and 

semantic similarity (0.890264), but was less competitive in terms of faithfulness (0.808404) 

and response time (3.60444 seconds). This makes it less suitable for interactive or real-time 

applications, though it remains a viable option for small-scale or prototype systems. 

LanceDB showed relatively high semantic similarity (0.893194) and context recall 

(0.9), yet its faithfulness score (0.79) and slightly longer response time (3.00584 seconds) 

limit its advantage compared to FAISS. Nevertheless, it may be beneficial in use cases where 

semantic coherence is prioritized over factual accuracy. 

In contrast, Chroma produced the lowest results across several metrics, including 

answer relevancy (0.750281) and context recall (0.7). Despite a moderate response time 
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(3.11018 seconds), its reduced answer quality and incomplete contextual retrieval make it less 

suitable for high-precision applications. 

In summary, FAISS represents the most effective choice for implementing RAG-based 

systems due to its superior performance in accuracy, faithfulness, and speed. InMemoryVectorStore 

may be used for smaller-scale or experimental tasks, while LanceDB is appropriate when semantic 

similarity is a key factor. Chroma, on the other hand, is better suited for simple or non-critical 

applications with lower quality requirements. 

Experiment No. 3 

Based on the findings of the previous experiments, the LangChain framework and the 

FAISS vector database were identified as the optimal combination for building RAG-based 

Q&A systems. 

In this final experiment, a new Q&A system was implemented using these components, 

while varying two parameters: chunk size and chunk overlap. Results were obtained for all 

parameter combinations listed in Table 1, and the average metric values are presented in Tab. 5. 

Table 5. 

Average performance metric values for different chunk size and overlap combinations 

No Chunk 

Size 

Chunk 

Overlap 

Relevancy Faithfulness  Context 

recall 

Context 

precision 

Semantic 

Similarity 

Elapsed 

time 

1 500 50 0.951175 0.818182 0.8 0.816667 0.892624 3.59871 

2 1000 50 0.950767 0.819972 0.9 0.816667 0.891994 2.96236 

3 1000 200 0.950937 0.790417 0.9 0.780556 0.891495 2.95429 

4 1500 500 0.951006 0.848333 0.8 0.816667 0.892098 3.8678 

 

Based on the obtained results, the following observations can be made for each 

configuration: 

Chunk size 500 with overlap 50 demonstrates the highest answer relevancy (0.951175) 

and high context precision (0.816667), but has an average context recall (0.8) and a longer 

execution time (3.59871 seconds). 

Chunk size 1000 with overlap 50 provides the most balanced performance, with the 

maximum context recall (0.9), consistently high context precision (0.816667) and faithfulness 

(0.819972), and a moderate execution time (2.96236 seconds). 

Chunk size 1000 with overlap 50 achieves the fastest execution time (2.95429 

seconds) and the maximum context recall (0.9), but its context precision (0.780556) and 

faithfulness (0.790417) are lower, which may affect the overall response quality. 

Chunk size 1500 with overlap 500 exhibits the highest faithfulness (0.848333) and 

strong answer relevancy (0.951006), but shows lower context recall (0.8) and the longest 

execution time (3.8678 seconds). 

Among the tests, 1000/50 configuration demonstrates the most optimal trade-off 

between quality and efficiency. It combines the maximum context recall (0.9), high context 
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precision (0.816667), and balanced execution time (2.96236 seconds), making it well-suited 

for complex customer support scenarios. 

The 500/50 configuration is preferable when high contextual accuracy and answer 

relevancy are prioritized over processing speed. 

The 1000/200 setup is appropriate for real-time applications requiring high recall and 

rapid response generation. 

In contrast, 1500/500 configuration is recommended for tasks emphasizing response 

faithfulness, where execution speed and context coverage are less critical. 

Conclusion 

The study investigated the components of Retrieval-Augmented Generation (RAG) 

systems for developing an efficient support chatbot capable of processing complex 

documents. The experimental evaluation revealed the configuration that provides the best 

trade-off between accuracy, context completeness, and computational efficiency. 

We found that the LangChain framework achieves the highest accuracy and context 

recall, making it well suited for generating detailed and reliable answers. The FAISS library 

demonstrated superior performance among all tested vector databases in terms of answer 

relevancy, faithfulness, and context recall, while maintaining the fastest response time. The text-

splitting configuration with chunk size 1000 and chunk overlap 50 showed the most balanced 

results, providing high context precision, maximal recall, and reasonable processing time. 

Therefore, the combination of LangChain, FAISS, and the 1000/50 chunking 

configuration represents the optimal solution for implementing a high-performance RAG-

based support chatbot in our setting. This configuration ensures accurate, faithful, and 

contextually relevant responses, contributing to improved reliability and service quality in 

real-world applications and can be recommended as a base configuration for support chatbots 

in different domain. 

Future work will investigate the performance of RAG systems in low-resource and 

multilingual settings [9], with particular attention to the influence of embedding quality, 

cross-lingual alignment, and retrieval strategies on overall system effectiveness. 
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