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EXPERIMENTAL EVALUATION OF RAG COMPONENTS
AND THEIR IMPACT ON THE PERFORMANCE
OF CUSTOMER SUPPORT CHATBOTS

Abstract: This paper presents an experimental evaluation of Retrieval-Augmented
Generation (RAG) components for developing an intelligent support chatbot capable of
processing complex documents. The study examines multiple frameworks, vector databases,
and text-chunking strategies to determine the optimal configuration ensuring accuracy,
contextual completeness, and efficiency. Results show that the LangChain framework
achieves higher accuracy and context coverage than Llamalndex, while FAISS provides
superior answer relevancy, faithfulness, and processing speed. A chunk size of 1000 with an
overlap of 50 vyields the best balance between precision, recall, and response time. The
combination of LangChain, FAISS, and the 1000/50 chunking configuration establishes a
robust foundation for a high-performance RAG-based chatbot delivering accurate, faithful,
and contextually relevant responses.
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Introduction

Modern natural language processing technologies, particularly large language models
(LLMs), open new possibilities for developing intelligent support chatbots [1,2]. The
Retrieval-Augmented Generation (RAG) approach, which combines text generation with the
retrieval of relevant information, enables more accurate and context-aware responses
compared to traditional models [3,4]. However, the effectiveness of RAG systems depends on
the proper configuration of their components, which directly influences the quality and speed
of query processing.

This paper investigates the impact of key components of RAG systems, including
frameworks, vector databases, and text chunking parameters, on the performance of support
chatbots. Experiments were conducted using domain-specific documents such as insurance
contracts, with evaluation metrics designed to assess the relevance, factual accuracy, and
contextual completeness of generated responses.

The objective of this study is to identify efficient configurations of RAG systems for
developing automated support chatbots capable of handling complex queries in domains such
as insurance, healthcare, e-commerce, and technical support. Performance is evaluated based
on accuracy, completeness, factual consistency, relevance, and response time—factors that are
critical for ensuring high-quality, user-oriented interactions. The results of this study
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contribute to the formulation of practical recommendations for improving user service quality
by delivering precise and timely responses.

Related research and publications

Research on Retrieval-Augmented Generation (RAG) has confirmed its effectiveness

for natural language processing tasks, particularly in support chatbots [1,4]. In [5] the concept
of RAG was introduced as an integration of parametric memory (language model) with non-
parametric memory (vector database), emphasizing the importance of retrieval part that has
significant impact on the accuracy and factual consistency of generated responses. The study
in [3] systematizes existing RAG approaches, identifying key components—retrieval,
generation, and augmentation—and emphasizing the role of frameworks such as LangChain in
simplifying their integration.
The research in [6] highlights the impact of including multi-query in the retrieval phase, while
the work in [7] focuses on optimizing text chunking strategies, showing that parameters such
as chunk size and chunk overlap affect the balance between retrieval accuracy and contextual
completeness.

These studies highlight the necessity of carefully tuning RAG components to ensure
high-quality responses in dialogue systems. The decision to investigate frameworks, vector
databases, and text chunking parameters (chunk size, chunk overlap) in the present work is
based on the findings of these prior studies. Frameworks were selected for analysis due to
their ability to optimize the integration of retrieval and generation components, which is
critical for support chatbots, as discussed in [3]. Vector databases are examined for their
influence on retrieval speed and precision, as noted in [5], particularly when processing
complex documents such as insurance contracts. Finally, the parameters chunk size and chunk
overlap were chosen for analysis because, as shown in [7, 8], they directly affect contextual
quality and completeness — factors essential for ensuring response relevance.

A comprehensive examination of these components enables the formulation of
recommendations for designing highly efficient RAG-based systems tailored to the
requirements of support chatbots across diverse domains.

Proposed solution

For the development of the support chatbot system, the RAG model shown in Figure 1
was defined. The proposed model includes two main components, described below.

1. Data Preparation

— Raw Data Sources: Data is obtained from text files or other document formats.

— Information Extraction: Relevant information is extracted for further processing.

— Chunking: Data is divided into smaller, manageable parts suitable for analysis.
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— Embedding: Logical data segments are encoded into vector representations for
storage in a vector database. This enables the system to identify semantic
similarities between user queries and stored data.
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Figure 1. Architecture and Workflow of the RAG System

N

. Query Processing
— Query: The user submits a request to the system.
— Embedding: The query is converted into a vector representation.
— \Vector Database: The vector database retrieves the most relevant data segments
based on the query.
— Relevant Data: Retrieved data fragments are passed to the generation component.
— Large Language Model (LLM): The LLM processes the user’s query together with
the retrieved data to generate a personalized and contextually relevant response.
— Response: The generated response is returned to the user.
This RAG system workflow is used as the foundation for the conducted experiments.
Description of Components for Investigation
1. Framework Selection. Developing a RAG-based support chatbot requires selecting
an appropriate framework optimized for retrieval and language model integration. Two widely
used frameworks were considered: LangChain and Llamalndex, both designed to facilitate
interaction with large language models and retrieval pipelines.
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Table 1.
Parameter Combinations of Chunk Size and Chunk Overlap Used in the Experiment

- InMemory
Characteristic Chroma FAISS LanceDB
VectorStore
Local Local (with optional On-disk with
Storage Type In-memory L . -
storage disk integration) scalability support
Access Speed Very high High High (especially with High
P yhig 9 GPU acceleration) g
Scalability Limited Limited High High
Multimodality .
No Yes Partial Yes
Support

LangChain is a framework for building systems powered by language models. Its
main advantage is the ability to structure data processing into chains, which ensures context
preservation throughout the dialogue. LangChain supports integration with various data
sources, including knowledge bases and APIs, making it highly effective for RAG
applications where response accuracy and relevance are crucial.

Llamalndex is a data indexing and retrieval tool that leverages vector representations
for efficient information access. Its primary strength lies in optimizing the process of
retrieving relevant data and passing it to the language model. This enhances response
precision in RAG systems, particularly when working with large volumes of textual
information.

2. Vector Database Selection. The choice of vector database significantly affects the
quality of chatbot responses. Therefore, several popular databases with distinct characteristics
and scalability options were selected for comparison. The comparative characteristics of the
chosen databases are summarized in Tab. 1.

3. Chunking Parameter Configuration. Four configurations of the parameters chunk
size (maximum length of a text fragment) and chunk overlap (the degree of overlap between
adjacent chunks to preserve textual coherence) were selected for testing. These
configurations, presented in Tab. 2, enable the evaluation of how different parameter
combinations affect the quality and consistency of generated responses.

Experimental results

Gemma 3 models, which operate solely on text input (no direct visual features),
achieved higher top-1 scores — up to 71.25% (27B) — and up to 95% top-3 accuracy, although
at the cost of significantly higher inference times (up to 6.9 seconds).
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Table 2.
Parameter Combinations of Chunk Size and Chunk Overlap Used in the Experiment
No | Chunk | Chunk Description
Size | Overlap

1 500 50 Small chunks with minimal overlap — used to assess the risk of
context loss caused by excessively short text fragments.

2 1000 50 Medium chunk size with minimal overlap — used to examine
whether limited overlap provides sufficient contextual continuity.

3 1000 200 Medium chunk size with moderate overlap — used to evaluate the
balance between contextual completeness and processing
efficiency.

4 1500 500 Large chunks with high overlap — used to analyze performance for
long document fragments where context preservation is critical.

The study and selection of the RAG system components described above aim to
identify the most effective solutions for implementing a support chatbot.

Evaluation Metrics

RAGAs is a framework designed to provide a comprehensive evaluation of RAG
systems, encompassing both individual components and the overall process. Its key advantage
lies in reference-free evaluation, which leverages large language models (LLMSs) instead of
manually annotated datasets, thereby making the assessment process faster and more cost-
efficient.

RAGAs requires several inputs for operation: a question, answer, contexts, ground-
truth responses, and file search results. This enables efficient evaluation of response relevance
and accuracy. Ground-truth responses in this study were obtained using the OpenAl
Assistants API, which integrates seamlessly with applications and supports tools for file
retrieval, code interpretation, and query handling.

RAGA:s also supports annotated metrics and automatic generation of test data, making
it an effective framework for assessing the response quality of RAG-based systems.

The following metrics were selected for system evaluation:

1. Context Precision — measures the ratio of useful information to noise within

retrieved contexts.

2. Context Recall — assesses whether the retrieved contexts contain all necessary

information.

3. Faithfulness — evaluates the factual consistency of the response with the retrieved

contexts.

4. Answer Relevancy — measures how well the generated answer addresses the user’s

query in terms of completeness and accuracy.
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5. Answer Semantic Similarity — quantifies the semantic similarity between the

generated response and the ground-truth answer.

6. Response Time — measures the latency of answer generation.

All metrics are normalized within the range [0, 1], where higher values indicate better
performance.

Experimental Setup

To conduct the experiments, evaluation functions for the respective RAG system
components were implemented. An insurance contract from an open public dataset was
chosen as a test document.

Experiment No. 1

Two basic question-answer (Q&A) systems were implemented using the LangChain
and Llamalndex frameworks.

Both systems were tested with identical queries based on the selected document, and
their responses were evaluated using the predefined metrics: Context Precision, Context
Recall, Faithfulness, Answer Relevancy, Answer Semantic Similarity, and Response Time.

For convenience of comparison, the average values of all metrics were calculated for
each system. The summarized results are presented in Tab. 3. Subsequent experiments report
only the mean values of metrics.

Table 3.
Average performance metric values for LangChain and Llamalndex frameworks

Framework | Relevancy | Faithfulness | Context | Context | Semantic | Elapsed
recall precision | Similarity time

LangChain 0.96362 0.808404 | 0.843333 | 0.788889 | 0.890264 | 3.60444

Llamalndex 0.69379 0.829048 0.711429 0.75 0.877473 | 1.51861

Based on the obtained evaluation results, LangChain is the most suitable choice for
tasks where accuracy, relevance, and context completeness are of primary importance. Its
answer relevancy score reached 0.96362, which is significantly higher compare to
Llamalndex (0.69379). Furthermore, the context recall metric for LangChain was noticeably
superior, indicating that LangChain provides broader coverage of the relevant information.
These metrics collectively demonstrate that LangChain is better suited for applications where
high-quality, detailed responses are essential.

Conversely, Llamalndex showed a considerable advantage in terms of response time,
achieving an average of 1.51861 seconds, compared to 3.60444 seconds for LangChain. This
higher speed makes it more effective for interactive or time-critical scenarios, where rapid
response generation is a key requirement. Additionally, the faithfulness metric for LIamalndex
was slightly higher (0.829048 versus 0.808404 for LangChain), suggesting a lower risk of
factual inaccuracies in the generated responses.
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Overall, for support chatbots that process contractual documents and must ensure both
accuracy and contextual completeness, LangChain represents better framework due to its
strong performance across the most critical quality metrics. However, in scenarios where
processing speed is the dominant factor, Llamalndex may be a more appropriate choice,
particularly for simpler queries or high-throughput environments.

Experiment No. 2

Based on the findings of the first experiment, LangChain was identified as the most
optimal framework. Consequently, all subsequent Q&A system implementations were
developed using this framework as the foundation.

In the second study, the vector database was selected as the variable parameter. Responses
were generated using each of the previously described vector databases, and the resulting outputs
were evaluated. Average metric values were calculated and summarized for analysis.

For comparative purposes, additional results obtained using the InMemoryVectorStore
were also included. The summarized outcomes of this evaluation are presented in Tab. 4.

Table 4.
Average performance metric values for different vector databases
Database Relevancy | Faithfulness | Context | Context | Semantic | Elapsed
recall precision | Similarity time

InMemoryVec| 0.96362 0.808404 | 0.843333 | 0.788889 | 0.890264 | 3.60444
torStore

Chroma 0.750281 0.858274 0.7 0.755556 | 0.876092 | 3.11018

FAISS 0.965183 0.866667 0.9 0.8 0.890555 | 2.76104

LanceDB 0.933294 0.79 0.9 0.816667 | 0.893194 | 3.00584

Among the evaluated vector databases, FAISS demonstrated the best overall
performance. It achieved the highest scores in answer relevancy (0.965183), faithfulness
(0.866667), and context recall (0.9), while also providing the fastest response time (2.76104
seconds). These results make FAISS the optimal choice for tasks that require a balance of
accuracy, reliability, and computational efficiency.

The InMemoryVectorStore exhibited strong results in answer relevancy (0.96362) and
semantic similarity (0.890264), but was less competitive in terms of faithfulness (0.808404)
and response time (3.60444 seconds). This makes it less suitable for interactive or real-time
applications, though it remains a viable option for small-scale or prototype systems.

LanceDB showed relatively high semantic similarity (0.893194) and context recall
(0.9), yet its faithfulness score (0.79) and slightly longer response time (3.00584 seconds)
limit its advantage compared to FAISS. Nevertheless, it may be beneficial in use cases where
semantic coherence is prioritized over factual accuracy.

In contrast, Chroma produced the lowest results across several metrics, including
answer relevancy (0.750281) and context recall (0.7). Despite a moderate response time
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(3.11018 seconds), its reduced answer quality and incomplete contextual retrieval make it less
suitable for high-precision applications.

In summary, FAISS represents the most effective choice for implementing RAG-based
systems due to its superior performance in accuracy, faithfulness, and speed. InMemory\VectorStore
may be used for smaller-scale or experimental tasks, while LanceDB is appropriate when semantic
similarity is a key factor. Chroma, on the other hand, is better suited for simple or non-critical
applications with lower quality requirements.

Experiment No. 3

Based on the findings of the previous experiments, the LangChain framework and the
FAISS vector database were identified as the optimal combination for building RAG-based
Q&A systems.

In this final experiment, a new Q&A system was implemented using these components,
while varying two parameters: chunk size and chunk overlap. Results were obtained for all
parameter combinations listed in Table 1, and the average metric values are presented in Tab. 5.

Table 5.
Average performance metric values for different chunk size and overlap combinations

No| Chunk | Chunk | Relevancy | Faithfulness | Context | Context | Semantic | Elapsed
Size | Overlap recall | precision | Similarity | time

500 50 0.951175 | 0.818182 0.8 0.816667 | 0.892624 | 3.59871

1000 50 0.950767 | 0.819972 0.9 0.816667 | 0.891994 | 2.96236

1000 200 0.950937 | 0.790417 0.9 0.780556 | 0.891495 | 2.95429

Bl W DN

1500 500 0.951006 | 0.848333 0.8 0.816667 | 0.892098 | 3.8678

Based on the obtained results, the following observations can be made for each
configuration:

Chunk size 500 with overlap 50 demonstrates the highest answer relevancy (0.951175)
and high context precision (0.816667), but has an average context recall (0.8) and a longer
execution time (3.59871 seconds).

Chunk size 1000 with overlap 50 provides the most balanced performance, with the
maximum context recall (0.9), consistently high context precision (0.816667) and faithfulness
(0.819972), and a moderate execution time (2.96236 seconds).

Chunk size 1000 with overlap 50 achieves the fastest execution time (2.95429
seconds) and the maximum context recall (0.9), but its context precision (0.780556) and
faithfulness (0.790417) are lower, which may affect the overall response quality.

Chunk size 1500 with overlap 500 exhibits the highest faithfulness (0.848333) and
strong answer relevancy (0.951006), but shows lower context recall (0.8) and the longest
execution time (3.8678 seconds).

Among the tests, 1000/50 configuration demonstrates the most optimal trade-off
between quality and efficiency. It combines the maximum context recall (0.9), high context
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precision (0.816667), and balanced execution time (2.96236 seconds), making it well-suited
for complex customer support scenarios.

The 500/50 configuration is preferable when high contextual accuracy and answer
relevancy are prioritized over processing speed.

The 1000/200 setup is appropriate for real-time applications requiring high recall and
rapid response generation.

In contrast, 1500/500 configuration is recommended for tasks emphasizing response
faithfulness, where execution speed and context coverage are less critical.

Conclusion

The study investigated the components of Retrieval-Augmented Generation (RAG)
systems for developing an efficient support chatbot capable of processing complex
documents. The experimental evaluation revealed the configuration that provides the best
trade-off between accuracy, context completeness, and computational efficiency.

We found that the LangChain framework achieves the highest accuracy and context
recall, making it well suited for generating detailed and reliable answers. The FAISS library
demonstrated superior performance among all tested vector databases in terms of answer
relevancy, faithfulness, and context recall, while maintaining the fastest response time. The text-
splitting configuration with chunk size 1000 and chunk overlap 50 showed the most balanced
results, providing high context precision, maximal recall, and reasonable processing time.

Therefore, the combination of LangChain, FAISS, and the 1000/50 chunking
configuration represents the optimal solution for implementing a high-performance RAG-
based support chatbot in our setting. This configuration ensures accurate, faithful, and
contextually relevant responses, contributing to improved reliability and service quality in
real-world applications and can be recommended as a base configuration for support chatbots
in different domain.

Future work will investigate the performance of RAG systems in low-resource and
multilingual settings [9], with particular attention to the influence of embedding quality,
cross-lingual alignment, and retrieval strategies on overall system effectiveness.
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