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Анотація: Швидкий прогрес у сфері безпілотних літальних апаратів і зростання 

пов’язаних із ними загроз створюють нагальну потребу в розробці ефективних систем 

для їх своєчасного виявлення та класифікації. В умовах триваючої повномасштабної 

війни в Україні дрони використовуються для розвідки, коригування артилерійського 

вогню та для нанесення ударів по критичній інфраструктурі. Це зумовлює необхідність 

запровадження систем раннього попередження, здатних функціонувати у складних 

умовах. В даній роботі розглянуто проблему автоматичного розпізнавання літальних 

апаратів за їхніми акустичними сигнатурами. Розроблено збалансований набір даних  

з використанням технології Transfer Data. Розроблено архітектуру нейронної мережі, 

оптимізовану для вилучення часово-частотних ознак акустичних сигналів і класифікації 

об’єктів за трьома класами: Drone, Airplane, Helicopter. Проведено навчання та 

тестування моделі, точність на навчальному наборі даних склала 99%, на тестовому 90%. 

Навчену модель інтегровано до складу системи розпізнавання як окремий модуль 

нейронної мережі, який здійснює аналіз аудіофайлів та визначає тип літального апарата  

з вказанням рівня впевненості прогнозу. Запропонована система може бути використана 

у задачах моніторингу повітряного простору, безпеки та цивільної оборони, а також 

адаптована для розпізнавання інших типів технічних об’єктів за акустичними ознаками. 

Ключові слова:система розпізнавання літальних апаратів, акустичні сигнатури, 

класифікація аудіосигналів, нейронні мережі, глибоке навчання,  спектограма. 

Вступ 

Стрімкий розвиток технологій безпілотних літальних апаратів (БПЛА) та зростання 

загроз, пов’язаних із їх використанням, зумовлюють необхідність створення надійних 

засобів їхнього своєчасного виявлення і класифікації. В умовах триваючої повномасштабної 

війни в Україні дрони застосовуються не лише як інструменти розвідки чи коригування 

артилерійського вогню, але й для завдання ударів по критичній інфраструктурі та цивільних 

об’єктах [1]. Це підвищує потребу у впровадженні систем раннього оповіщення, здатних 

працювати у складних умовах та на великій території. 

Класичні методи детекції літальних апаратів – радіолокаційні станції, оптичні або 

тепловізійні системи – мають низку суттєвих обмежень [2]. Зокрема, малі дрони важко 

ідентифікувати на радарі через їхню невелику ефективну площу розсіювання [3],  

а робота оптичних сенсорів суттєво залежить від зовнішнього освітлення, погодних умов 

та лінії прямої видимості. 
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Одним із альтернативних і перспективних підходів є аналіз акустичних сигнатур – 

характерних звукових відбитків, які формуються під час роботи двигунів і пропелерів 

літальних апаратів [4]. Такий метод дозволяє створювати пасивні системи моніторингу, що 

не потребують випромінювання активних сигналів, тому залишаються непомітними для 

противника. До того ж, акустичне виявлення можливе у темний час доби, при тумані, 

задимленні або інших умовах, де оптичні та радіолокаційні засоби втрачають ефективність. 

Акустичне виявлення літальних апаратів є складною інтелектуальною задачею, що не 

може  бути  вирішена за допомогою формального її опису. Для автоматизації вирішення даної 

задачі доцільно застосувати методи та технології штучного інтелекту [5]. На даний час 

методи, технології та алгоритми ШІ, а особливо методи машинного навчання та нейронні 

мережі, успішно вирішують задачі з комп’ютерного зору [6], обробки та генерації природної 

мови [7, 8], перетворення звуку в текст та навпаки [9], генерації зображень та відео [10],  

в системах керування, проєктування та прийняття рішень  [11 – 13] і т.д. Завдяки основним 

властивостям нейронних мереж, а саме універсальним апроксимаційним властивостям та 

здатності до навчання, вони перетворюються у інструмент високої точності для вирішення 

інтелектуальних задач. Нейронні мережі можна використовувати для виявлення та 

класифікації різних типів аудіосигналів, таких як мова, музика та звуки навколишнього 

середовища. Нейронні мережі здатні вивчати складні шаблони аудіосигналів і можуть бути 

навчені на великих наборах даних для досягнення високої точності. Поєднання нейронних 

мереж із методами акустичного аналізу відкриває широкі можливості для створення 

інтелектуальних систем розпізнавання різних типів літальних апаратів [14]. Розробка таких 

систем є актуальною як для військових застосувань, так і для цивільних сфер – зокрема, 

моніторингу повітряного простору, охорони критичної інфраструктури та попередження 

несанкціонованих польотів. 

Постановка задачі 

Акустичні сигнали літальних апаратів мають свої особливості. Для прикладу, 

двигуни та ротори БПЛА генерують стійкі частотні гармоніки, які у спектрограмах 

проявляються як низка інтенсивних ліній на низьких і середніх частотах [15,16]. Ці 

гармоніки залежать від моделі апарату і ситуації (статичний політ, маневри тощо). Водночас 

фонова акустика (вітер, рух транспорту, інші об’єкти) ускладнює класифікацію, тому 

передбачає застосування попередньої обробки сигналу (шумозаглушення, фільтрації). 

Основна задача полягає в автоматичному аналізі звукових сигналів для виявлення 

та ідентифікації літальних апаратів. Це багатокласова класифікація, в якій система 

повинна отримувати на вхід фрагмент звукового сигналу певної тривалості  , що може 

містити акустичну інформацію про роботу літального апарата, або бути шумом навко-

лишнього середовища. Необхідно визначити, до якого класу    із множини можливих 

               належить цей сигнал. 

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1  (48) 2026

 ISSN 1560-8956 70



Водночас, ефективність системи значною мірою залежить від якості обробки 

сигналів та застосування методів глибокого навчання. Дослідження підтверджують, що 

акустичні характеристики можуть бути ефективно представлені за допомогою часово-

частотних ознак [17], таких як спектрограми (рис. 1) та мел-частотні кепстральні 

коефіцієнти (MFCCs) (рис. 2), для оцінки різних конвеєрів обробки сигналів та побудови 

датасетів для виявлення різних типів літальних апартів. 

 

Рисунок 1. Спектрограма акустичного сигналу, що ілюструє часово-частотну  

еволюцію шуму, яка генерується електродвигуном дрона 

 

Рисунок 2. Типова теплова карта MFCC з часовим та коефіцієнтним вимірами 

Техніки вилучення та представлення акустичних ознак 

Процес вилучення ознак – критичний етап в обробці звуку. Від того, які й як 

вилучаються характеристики сигналу значно залежить ефективність класифікатора [18]. 

При цьому, існують різні техніки вилучення та відповідно представлення акустичних 

сигнатур. 

Короткочасне перетворення Фур’є [19] є фундаментальною технікою для 

отримання стандартних спектрограм, які візуалізують потужність сигналу як функцію 
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часу і частоти. Для кожного часовго фрагмента сигналу застосовується віконне  

Фур’є-перетворення: 

               
               ,    (1) 

де      – аудіосигнал,      – віконна функція (Хеннінга або Гаусова),   – часовий зсув, а 

  – кутова частота. 

Отримана спектрограма визначається як: 

                 ,     (2) 

Це представлення дає змогу відстежувати зміну частотного складу сигналу у часі, 

що особливо корисно для звуків із періодичними або гармонічними компонентами – 

такими, як звук пропелерів дронів. 

STFT забезпечує високу роздільну здатність у частотній області, проте її точність 

у часовій області обмежується вибором довжини вікна. 

Мел-частотні кепстральні коефіцієнти (MFCC) є однією з найбільш поширених та 

ефективних форм представлення звукових даних [20]. Вони являють собою представ-

лення короткострокового спектра потужності звуку, засноване на лінійному косинус-

ному перетворенні лог-спектра потужності, відображеного на нелінійній шкалі частот 

Мела. На відміну від лінійної частотної шкали, мел-шкала є нелінійною і апроксимує 

сприйняття частот людиною: 

                  
 

   
 ,            (3) 

Ключова перевага MFCC полягає в тому, що мел-шкала апроксимує нелінійну 

реакцію слухової системи людини, на відміну від лінійно-рознесених частотних смуг, які 

використовуються у звичайному спектрі [21]. Така частотна трансформація забезпечує 

краще представлення звуку для завдань розпізнавання. 

Процес виведення MFCC є багатоетапним (рис. 3): 

 перетворення Фур’є застосовується до (віконного фрагмента) сигналу; 

 масштабування на мел-шкалу, потужності отриманого спектра відображаються 

на мел-шкалу за допомогою трикутних або косинусних вікон; 

 на етапі логарифмування береться логарифм потужностей на кожній із мел-частот. 

 дискретне косинусне перетворення(DCT) застосовується до списку лог-

потужностей мел-шкали, результатом чого є амплітуди, що становлять самі MFCCs. 

Мел-спектрограма – це безпосереднє представлення енергії сигналу на мел-шкалі 

без застосування DCT [22]. Вона має форму: 

                               ,                              (4) 

де   – індекс часової рамки (time frame) після розбиття сигналу на вікна (фрейми),   – номер 

мел-фільтра у фільтрбанку,        – комплексне значення спектра STFT сигналу у фреймі 
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 на частоті ,       – коефіцієнти мел-фільтру  для частоти  ,   – мала константа, що 

додається для уникнення обчислення логарифма від нуля (стабілізує обчислення). 

 

Рисунок 3. Ілюстрація процесу обчислення MFCC 

Також варто згадати хвильові (Wavelet) перетворення, що дозволяють досліджувати 

сигнал одночасно в часовій та частотній областях [23], із можливістю адаптації масштабу: 

       
 

    
        

   

 
   

 

  
,                                     (5) 

де      – материнська хвиля,   – масштаб,   – зсув. 

Табл. 1 ілюструє порівняльний аналіз методів вилучення акустичних ознак. 

Таблиця 1. 

Порівняльний аналіз методів вилучення ознак 

Метод 
Тип 

представлення 
Переваги Недоліки 

STFT 
Лінійна часово-

частотна 

Висока інтерпретованість; 

стабільна основа для CNN 

Обмежена часово-

частотна 

роздільність 

MFCC Мел-шкала + DCT 

Висока компактність; 

адаптація до людського 

слуху 

Чутливість до шуму; 

втрата просторових 

патернів 

Мел-

спектрограма 

Лог-мел 

енергетичне 

зображення 

Підходить для CNN; 

інформативне зображення 

спектру 

Вища розмірність; 

потребує 

нормалізації 

Хвильові 

перетворення 
Масштабно-часове 

Гнучке відображення 

швидких змін; стійкість до 

шуму 

Нелінійність і 

висока складність 

реалізації 

Опис функціональних модулів системи 

На початковому етапі проєктування системи особливу увагу було приділено 

визначенню функціональної структури, яка б забезпечувала логічне розмежування 

завдань, підвищувала гнучкість розробки та спрощувала подальше обслуговування. 

Ефективна робота системи передбачає одночасне виконання декількох процесів: прийом  
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і попередню обробку звукових сигналів, вилучення ознак, класифікацію типів літальних 

апаратів, збереження результатів та проведення статистичного аналізу. Такий набір 

різнорідних операцій потребує модульної архітектури, де кожен компонент відповідає за 

окремий етап обробки даних, взаємодіючи з іншими через стандартизовані інтерфейси. 

Вибір саме модульної структури зумовлений її ключовими перевагами [24]. Вона 

дозволяє забезпечити повторне використання компонентів у майбутніх версіях системи, 

ізолює відповідальність підсистем для зменшення ймовірності взаємних помилок, а також 

підтримує незалежне масштабування тих модулів, які вимагають підвищених обчислюваль-

них ресурсів – наприклад, модуля обробки аудіо або модуля нейронної моделі.  

Загальна структура системи включає шість основних модулів, які реалізують повний 

цикл роботи (рис. 4): модуль обробки аудіо, модуль нейронної моделі, модуль збереження 

даних, модуль статистики та аналітики, модуль сповіщень і модуль користувацького 

інтерфейсу. Усі ці компоненти взаємопов’язані між собою, забезпечуючи послідовне 

перетворення інформації від первинного сигналу до кінцевого результату, відображеного 

користувачу. 

 

Рисунок 4. Ілюстрація модульної архітектури системи 
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Модуль обробки аудіо виконує функції прийому звукових сигналів, їх попередньої 

підготовки та перетворення у формат, придатний для аналізу нейронною мережею. Він  

є проміжною ланкою між джерелом звуку та класифікаційним механізмом системи.  

У межах роботи цей модуль здійснює зчитування аудіо з локальних файлів або потоків 

мікрофона, виконує фільтрацію шумів і нормалізацію амплітуди, розбиває сигнал на 

короткі часові відрізки для подальшого спектрального аналізу та формує спектрограми 

або мел-частотні кепстральні коефіцієнти. Завдяки цьому система отримує стабільні 

часово-частотні ознаки, що зменшують вплив випадкових шумів і відмінностей у записах.  

Наступним компонентом є модуль нейронної моделі, який виконує основну 

інтелектуальну функцію – класифікацію літальних апаратів за їхніми акустичними 

сигнатурами. Модуль реалізує процес інференсу, тобто передбачення на основі навченої 

згорткової нейронної мережі (CNN), яка приймає на вхід спектрограми, обчислює 

приховані ознаки у своїх шарах і формує ймовірності належності до певного класу. 

Результати класифікації розраховуються за допомогою Softmax-функції, що нормалізує 

вихідні значення нейронної мережі у вигляді ймовірностей.  

Модуль збереження даних забезпечує централізоване управління інформацією, 

отриманою під час роботи системи. Його структура базується на реляційній базі даних,  

у якій зберігаються аудіофайли, спектрограми, результати класифікації, а також додаткова 

інформація про сесії роботи, налаштування користувача та історію сповіщень. Архітек-

тура модуля підтримує виконання операцій пошуку, сортування, агрегації та фільтрації,  

а також експорт даних для формування звітів.  

Модуль статистики та аналітики відіграє роль засобу узагальнення результатів 

роботи системи. Він накопичує інформацію про кількість виявлень, частоту класифікації 

окремих типів апаратів, середні значення впевненості прогнозів та інші показники, що 

характеризують ефективність роботи моделі. Зібрані аналітичні дані передаються до 

користувацького інтерфейсу для подальшої інтерпретації. 

Модуль сповіщень відповідає за автоматичне інформування користувача у разі 

виявлення об’єктів, що відповідають визначеним критеріям. Він перевіряє умови активації 

сповіщення при кожному новому прогнозі нейронної мережі, генерує звукові або візуальні 

сигнали, а також фіксує історію подій у базі даних.  

Модуль користувацького інтерфейсу забезпечує взаємодію користувача з усією 

системою. Він об’єднує результати роботи інших модулів у єдиному візуальному 

середовищі, надаючи можливість запускати процес розпізнавання, переглядати результати 

класифікації, аналізувати статистичні показники та налаштовувати параметри системи.  

Таким чином, розподіл системи на функціональні модулі забезпечує її логічну 

структурованість, стабільність і гнучкість. Кожен модуль виконує конкретну роль у загальному 

процесі розпізнавання, а їх взаємодія створює цілісну інтелектуальну систему, здатну до роботи 

в реальному часі та адаптації до нових типів акустичних даних. 
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Загальний опис пропонованого рішення 

Пропоноване рішення передбачає створення інтелектуальної системи 

розпізнавання літальних апаратів на основі акустичних сигнатур із використанням 

нейронних мереж. Така система забезпечує автоматичне виявлення та класифікацію 

різних класів літальних апаратів (дронів, літаків, вертольотів) у реальному часі, 

опираючись на звукові характеристики двигунів та пропелерів. 

Для реалізації системи передбачено виконання наступних ключових етапів: 

1) аналіз та підготовка вхідних і вихідних даних, що включає збір аудіозаписів 

різних типів літальних апаратів та фонового шуму, попередня обробка сигналів та 

формування навчальної, валідаційної та тестової вибірок; 

2) формалізація вхідних та вихідних даних,  побудова часово-частотних 

представлень сигналів та кодування міток класів у форматі one-hot для навчання 

нейронної мережі; 

3) розробка моделі згорткової нейронної мережі (CNN); 

4) навчання нейронної мережі та інтеграція моделі в систему, як один з її 

функціональних модулів. 

Таким чином, запропонована система реалізує повний цикл розпізнавання 

акустичних сигнатур літальних апаратів: від збору та підготовки даних до автоматичного 

класифікування та збереження результатів. Архітектура системи модульна, що 

забезпечує гнучкість і можливість подальшого масштабування або інтеграції з іншими 

сенсорними технологіями. 

Вхідні та вихідні дані, їх обробка 

У рамках цього розділу розглядаються вхідні та вихідні дані системи, саме на їх 

основі проводиться навчання та тестування нейронної мережі, від чого і залежить 

результат, який отримується на виході мережі. 

Вхідні дані представлені цифровими аудіозаписами, що відображають звукові 

характеристики різних класів літальних апаратів. Кожен файл містить звуковий сигнал 

польоту дронів, вертольотів та літаків в різних умовах експлуатації. Основні параметри 

записів включають: 

 частота дискретизації становить 44,1 кГц, що дозволяє зберегти спектральні 

деталі до 22 кГц; 

 бітова глибина дорівнює 16 біт, що забезпечуює динамічний діапазон близько 

96 дБ та мінімізацію квантових похибок; 

 формат аудіо файлів WAV, що гарантує стиснення без втрат та збереження 

спектральної інформації; 

 тривалість запису 2–10 секунд, це дозволяє охопити повний цикл обертання 

пропелерів або роботи двигуна. 
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Перед подачею на вхід нейронної мережі аудіосигнали проходять попередню 

обробку, що включає нормалізацію амплітуди (6): 

         
    

            
,              (6) 

де      – значення амплітуди сигналу в момент часу. 

Крім того, для виділення корисного сигналу використовується банд-пас фільтр із 

діапазоном 20–20 000 Гц, що дозволяє придушити низькочастотний і високочастотний 

шум та підвищити співвідношення сигнал/шум. 

Додатково, аби отримати часово-частотне представлення застосовується коротко-

часне перетворення Фур’є (STFT), описане вище. Отримані спектрограми використо-

вуються як вхідні дані для нейронної мережі, дозволяючи їй виявляти часово-частотні 

патерни, характерні для різних типів літальних апаратів. 

Не менш важливим є застосування методів аугментації, що сприяють збільшенню 

обсягу навчальної вибірки та підвищенню стійкості моделі. Серед цих методів можна 

виділити зміну швидкості відтворення ±10 %, додавання шуму до рівня SNR = 20–30 дБ 

та зміну тональності ±2 півтони. 

Вихідні дані формуються у вигляді категоріальних міток, що відповідають 

конкретному класу літального апарата. Для багатокласової класифікації застосовується 

one-hot кодування [25], що забезпечує однозначне представлення класів літальних апаратів 

і дозволяє застосовувати стандартні функції втрат для багатокласової класифікації. 

При цьому, в контексті оцінювання роботи моделі, використано метрики точності 

класифікації, серед яких точність (Accuracy), повнота (Recall) та точність (Precision) для 

кожного класу. 

Таким чином, цифрові аудіозаписи різних типів літальних апаратів, зібрані  

у контрольованих та польових умовах, забезпечують достатню різноманітність сигналів 

для формування навчального та тестового наборів. Використання високих частот 

дискретизації та формату збереження без втрат гарантує збереження спектральної 

інформації, необхідної для виявлення характерних акустичних патернів. Попередня 

обробка сигналів дозволяє виділити релевантні ознаки і зменшити вплив фонових шумів 

та артефактів запису. В результаті, правильна організація, стандартизація та підготовка 

цих даних є необхідною умовою для створення високоефективної системи 

розпізнавання, здатної адекватно працювати у різноманітних умовах експлуатації та 

забезпечувати надійне практичне застосування в реальному середовищі. 

Розробка набору даних та нейромережевої моделі  

розпізнавання літальних апаратів 

Для формування високоякісного набору даних застосований підхід Transfer Data, 

що передбачає адаптацію та повторне використання існуючих відкритих або суміжних 

аудіоколекцій для цільової задачі системи.Технологія Transfer Data полягає у 
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використанні вже наявних джерел, які частково відображають характеристики цільового 

завдання, із подальшою їхньою обробкою та стандартизацією. На рис. 5 зображено процес 

створення та обробки датасету. 

 

Рисунок 5. Ілюстрація процесу створення та обробки набору даних 

Перший етап включав аналіз доступних відкритих та напіввідкритих аудіоколекцій, 

що містять записи звуків дронів та інших літальних апаратів. Основним критерієм відбору 

було забезпечення наявності достовірних акустичних сигнатур, які відображають роботу 

двигунів, пропелерів та конструктивних елементів апаратів у різних умовах експлуатації. 

Серед досліджених і частково використаних джерел збору аудіо були: NASA Jet Propulsion 

Laboratory Acoustic Datasets, DroneSound Dataset, UAV Acoustic Dataset, ESC-50 та 

UrbanSound8K. 
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Наступним етапом стала стандартизація даних. Всі аудіофайли були переведені  

у формат .wav, з монофонічним каналом та частотою дискретизації 16 кГц, що забезпечує 

сумісність із бібліотеками Python, такими як Librosa та SciPy. 

Для підвищення стійкості моделі до реальних акустичних умов було застосовано 

вже згадану раніше аугментацію даних, включно з випадковим додаванням шуму, зміною 

швидкості відтворення та спектральними трансформаціями. Це дозволило моделі 

навчатися на більш реалістичних сценаріях, підвищуючи її здатність до генералізації. 

Після обробки датасет було розділено на три підмножини: 

 train (70%) – для безпосереднього навчання нейронної моделі; 

 validation (15%) – для налаштування параметрів моделі та запобігання перенавчанню; 

 test (15%) – для незалежної оцінки якості класифікації після завершення навчання. 

Застосування Transfer Data дозволило сформувати збалансований та репрезента-

тивний датасет, що поєднує кілька джерел, пройшов процес конвертації, очищення та 

аугментації, забезпечуючи якісну основу для навчання моделі. 

Після формування набору даних розроблено нейромережеву модель для класи-

фікації акустичних сигнатур літальних апаратів. Для реалізації було обрано згорткову 

нейронну мережу, яка є одним із найефективніших архітектурних підходів для аналізу 

часових і спектральних представлень аудіосигналів. Згорткові нейронні мережі дозво-

ляють автоматично виділяти релевантні ознаки з Mel-спектрограм, що є узагальненим 

представленням енергії сигналу в часі та частоті. 

Відібрані аудіозаписи перетворено на спектрограми за допомогою бібліотеки 

Librosa. Кожен сигнал розбивався на фрейми з перекриттям, до яких застосовувалось 

короткочасне перетворення Фур’є (STFT), а потім масштабування на мел-шкалу. 

Отримані матриці спектрограм нормалізувались та подавались як вхід до CNN у форматі 

масивів float32 розмірності (time_steps, frequency_bins, 1). 

Архітектура моделі (рис.6) побудована у середовищі TensorFlow/Keras як послідовна 

мережа з трьох згорткових блоків (Conv1D), кожен з яких містить шари нормалізації батчу 

(BatchNormalization) і підвибірки (MaxPooling1D). 

Після операції Flatten формується вектор ознак, який подається на два повнозв’язних 

шари по 512 нейронів із функцією активації ReLU. Для запобігання перенавчанню 

використано регуляризацію L2 та шари Dropout із коефіцієнтом 0.3. Вихідний шар містить 

три нейрони (для трьох класів) з функцією Softmax, яка забезпечує ймовірнісний розподіл 

прогнозів. 

Оптимізація ваг здійснювалась методом Adam із початковою швидкістю навчання 

0.0001. Функцією втрат обрано categorical crossentropy, оскільки задача є багатокласовою. 

Навчання проводилося протягом 700 епох із розміром пакета 32. 

Застосовувалися методи EarlyStopping і ModelCheckpoint для зупинки навчання у 

разі відсутності покращення валідаційних показників і збереження найкращої версії 

моделі. 
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Рисунок 6. Архітектура нейронної мережі CNN 

На рис. 7 подано графіки зміни точності (Accuracy), функції втрат (Loss) у процесі 

навчання показані на рис. 8. 

 

Рисунок 7. Графіки зміни точності (Accuracy) 

Як видно з графіків, точність на тренувальній вибірці поступово зростає та 

стабілізується близько значення 0.99, тоді як валідаційна точність утримується на рівні 

приблизно 0.85–0.88, що свідчить про прийнятну узагальнювальну здатність моделі без 

суттєвого перенавчання. Аналогічно, значення функції втрат для тренувальних і валідаційних 

даних зменшуються з кожною епохою, що вказує на стабільну збіжність оптимізаційного 

процесу. Невелика різниця між кривими втрат демонструє адекватне узгодження моделі із 

валідаційними даними. За підсумками тестування модель досягла середньої точності 
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класифікації понад 90 %. Найкращі результати спостерігались для класу Drone, що пояснюється 

більш чіткими та регулярними акустичними характеристиками цього типу об’єктів.  

 

Рисунок 8. Графіки зміни втрат (Loss) 

Після серії тестувань розроблену модель було інтегровано до складу програмної 

системи розпізнавання літальних апаратів як окремий модуль, що реалізує функцію 

класифікації вхідних аудіосигналів, автоматично визначаючи тип літального апарата на основі 

його акустичних характеристик. Інтеграція моделі дозволяє користувачу завантажувати 

аудіозапис, після чого система проводить обробку сигналу, виконує його спектральний аналіз і 

передає отримані ознаки до модуля нейронної мережі для класифікації. 

На рис. 8 показано приклад роботи системи: після аналізу вхідного файлу модель  

з імовірністю 90,1 % визначила клас Drone, що підтверджує її здатність до точного 

розпізнавання об’єктів у межах визначених категорій. 

 

Рисунок 8. Ілюстрація роботи модуля нейронної мережі в складі системи 
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Висновки 

У роботі розглянуто проблему автоматичного розпізнавання літальних апаратів на 

основі їхніх акустичних сигнатур. Актуальність дослідження зумовлена зростанням 

кількості безпілотних літальних апаратів та необхідністю створення інтелектуальних 

систем моніторингу, здатних ідентифікувати тип об’єкта за його звуковими характеристи-

ками в реальному часі. У межах дослідження  запропоновано підхід до побудови системи 

розпізнавання акустичних сигнатур, який поєднує методи цифрової обробки сигналів  

з апроксимаційними властивостями нейронних мереж. Розроблена система включає кілька 

взаємопов’язаних етапів: створення та обробка набору даних, вилучення ознак із сигналів, 

розробку архітектури та навчання згорткової нейронної мережі та інтеграція моделі до 

програмного модуля системи розпізнавання. 

Результати навчання та тестування нейромережевої моделі підтвердили стабільну 

збіжність моделі: тренувальна точність досягла 99%, а валідаційна – близько 85–88%, що 

свідчить про високу узагальнювальну здатність без суттєвих ознак перенавчання. Інтеграція 

навченої нейронної моделі у програмну систему дозволила реалізувати модуль розпізнавання, 

який приймає аудіосигнали як вхідні дані, проводить спектральний аналіз і виводить результат 

із зазначенням ймовірності приналежності до конкретного класу. Отримані результати 

підтверджують працездатність і ефективність запропонованої системи. Вона може бути 

застосована в автоматизованих системах спостереження, безпекових рішеннях або системах 

моніторингу повітряного простору для виявлення та класифікації об’єктів за звуковими 

характеристиками. 

Наступні кроки дослідження доцільно спрямувати на розширення набору даних за 

рахунок польових записів у різних умовах навколишнього середовища, впровадження 

гібридних архітектур для урахування часової динаміки сигналів, а також інтеграцію 

розробленої моделі в реальні системи моніторингу. 
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