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ПРОГРАМНЕ ЗАБЕЗПЕЧЕННЯ ДЛЯ ГЕНЕРАЦІЇ  

ТЕКСТІВ УКРАЇНСЬКОЮ МОВОЮ 

Анотація. Зростання ролі систем обробки природної мови (NLP) створює високий 

попит на програмне забезпечення, здатне генерувати якісні тексти українською мовою. 

Однак складна морфологічна структура, багата словозміна, синтаксична гнучкість та брак 

достатніх мовних ресурсів роблять цю задачу вкрай нетривіальною. Наявні великі мовні 

моделі (LLM), як-от GPT або LLaMA, хоча і демонструють чудові результати  

в англомовному середовищі, часто не забезпечують високої якості при роботі з українсь-

кою мовою. Ця проблема актуальна в таких сферах, як створення навчальних, офіційних  

і наукових текстів. Запропоноване рішення орієнтоване на усунення цих обмежень шляхом 

інтеграції LLM із морфологічним аналізом та інструментами виправлення граматичних 

помилок, зокрема LanguageTool, що дозволяє суттєво підвищити стилістичну й граматичну 

коректність згенерованих текстів. Робота присвячена розробці програмного забезпечення 

для генерації українськомовних текстів на основі інтеграції великих мовних моделей, 

морфологічного аналізу та тематичного моделювання, в результаті чого реалізовано 

масштабовану архітектуру. Проведено дослідження ефективності запропонованого 

підходу та здійснено fine-tuning моделей GPT-3.5 та LLaMA-3 для української мови. 

Програмне забезпечення реалізоване мовами Python та Java з використанням бібліотек 

spaCy, Gensim, LanguageTool, Airflow та OpenAI API. 

Ключові слова: генерація тексту, Big Data, українська мова, NLP, великі мовні 

моделі, морфологічний аналіз, LDA, синтаксичний аналіз, тематичне моделювання, 

перевірка граматики, spaCy, LanguageTool. 

Вступ 

У сучасних дослідженнях значну увагу приділено архітектурам генерації тексту 

на основі трансформерів [1–3]. Відомі моделі GPT  (Generative Pre-trained Transformer) 

від OpenAI, LLaMA від Meta та інші, що базуються на архітектурі Transformer, успішно 

застосовуються для генерації англомовних текстів. Проте українська мова через складну 

морфологію, нестачу якісних корпусів та обмежену представленість у фазі pre-training 

залишалася осторонь активного розвитку. 

Метою дослідження є підвищення якості згенерованих текстів української мови 

при заданій тематиці та наборі ключових слів. 
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Матеріали та методи 

Для генерації українськомовних текстів застосовуються два основні підходи: 

статистичні мовні моделі та великі трансформерні моделі (LLM). Перші вимагають 

ретельної побудови корпусів і ручного визначення граматичних залежностей, однак 

забезпечують контроль над стилем та структурою. Другий підхід – нейронний – базується на 

попередньому навчанні моделей на великих об’ємах текстови х даних. Для досягнення 

якісної генерації українською мовою необхідна додаткова адаптація (fine-tuning) таких 

моделей, оскільки українська мова часто є недостатньо представлена в базовому pre-training. 

Окремої уваги потребує питання корекції граматики, яке вирішується за допомогою 

алгоритмічного інструмента LanguageTool, доповненого правилами на основі морфологік-

них і синтаксичних залежностей. У цій роботі реалізовано гібридний підхід – поєднання 

тематичного моделювання LDA для релевантної генерації контенту, використання LLM для 

побудови тексту, та алгоритмічної перевірки LanguageTool з метою забезпечення 

граматичної правильності. Така комбінація дозволяє досягти як семантичної, так  

і формальної якості результату. У даній статті особливу увагу приділено архітектурі 

системи, що дозволяє автоматизувати весь процес генерації текстів — від ключових слів до 

редагованого тексту, готового до публікації. Завданнями даного дослідження є: 

 створення методу генерації текстів українською мовою; 

 створення прототипу програмного забезпечення для реалізації методу 

генерації текстів українською мовою; 

 дослідження ефективності запропонованого методу та програмного забезпечення. 

Метод генерації текстів українською мовою 

Серед інструментів морфологічного аналізу найбільш ефективним виявлено 

SpaCy, який має підтримку української мови. Інструмент LanguageTool відзначено як 

єдиний open-source засіб [15], здатний виявляти граматичні помилки українською 

мовою. Попри це, актуальним залишається завдання інтеграції всіх цих засобів в єдину 

систему для генерації текстів з покращеними морфологічними характеристиками. 

Недостатньо дослідженим аспектом є саме поєднання LLM з морфологічним 

аналізом та LDA-моделюванням, а також створення нового типу правил для 

граматичної перевірки, що враховують залежності між словами. Це й стало основою 

даного дослідження. 

Метод генерації текстів українською мовою, запропонований у дослідженні, 

реалізує інтеграцію трьох ключових технологічних компонентів: 

1. Великої мовної моделі (LLM) — для генерації тексту. 

2. Моделі тематичного моделювання LDA [9] — для розширення ключових слів 

і оцінки тематичної релевантності. 
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3. LanguageTool [8] із вдосконаленими правилами — для виявлення та 

виправлення граматичних помилок. 

Цей підхід дозволяє забезпечити високу якість, змістовність та граматичну 

правильність згенерованих текстів українською мовою [4]. 

 

Рисунок 1. Схема запропонованого методу 

Ключові слова, задані користувачем, подаються у модель LDA. Визначаються 

найбільш релевантні теми та слова з високою тематичною ймовірністю, які додаються 

до початкового списку. Основним призначенням цього етапу є розширення контексту, 

що буде використано під час генерації тексту. Навчена модель латентного розміщення 

Діріхле містить набір тем, кожна з яких, у свою чергу, складається з пар слів та їх 

вагових коефіцієнтів, що визначають їх приналежність до теми [4]. 

Для кожної теми    в моделі з N тем розраховується оцінка релевантності на 

основі попередньо заданих ключових слів  . Позначимо  -те слово у темі    як     , а як 

     позначимо відповідну ймовірність (приналежність) цього слова у темі. Тоді оцінка 

релевантності    для теми    розраховується за формулою (1). 

             
         (1) 
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Вибір тем відбувається на основі попередньо встановленого порогового 

значення topic_threshold. Тема включається до набору кандидатів для розширення якщо 

її оцінка релевантності    є більшою за порогове значення, що виражено у формулі (2). 

                           topic_threshold    (2) 

Наступним кроком є вибір слів із виділених тем для розширення списку 

ключових слів. Для кожної обраної теми    розглядаються всі її слова      та їх ймовір-

ності     . На цьому етапі також встановлюється порогове значення word_threshold, що 

використовується для фільтрації слів у межах теми. Набір розширених ключових слів 

    з теми    визначається за формулою (3). 

                   word_threshold    (3) 

Таким чином формується список додаткових ключових слів E за формулою (4). 

                                   (4) 

Результуючий список ключових слів формується шляхом обʼєднання початко-

вого K та додаткового E наборів. 

Фінальним етапом підготовки набору вхідних даних для тренування LDA моделі 

є перетворення у модель “Bag of words” [10]. Він включає створення структури даних, 

де текст представлений як набір слів без збереження інформації про порядок токенів у 

документі. [18] 

На наступному кроці відбувається генерація тексту за допомогою великої мовної 

моделі на основі вхідних параметрів, що визначають контекст. Принцип роботи таких 

моделей полягає у генерації продовження для вхідного тексту. Таким чином, для 

виконання цього етапу потрібно привести набір вхідних параметрів до простого 

текстового представлення запиту (prompt). 

Вхідні параметри: 

 тема; 

 ключові слова; 

 назва розділу. 

Вони трансформуються у структурований промпт “<TOPIC>topic</TOPIC>| 

<KEYWORDS>keywords</KEYWORDS>|<CHAPTER_NAME>chapter</CHAPTER_NAM

E>”, де TOPIC та CHAPTER - це відповідні значення вхідних параметрів теми та назви 

розділу, а KEYWORDS – це перелічені через кому ключові слова із результату 

виконання попереднього етапу. 

Наприклад в реченні «Хлопець, ступивши крок, побачила будівлю». виявляється 

порушення: присудок жіночого роду, підмет — чоловічого. Задане правило формує 

виправлення: заміна “побачила” на “побачив”. 

На наступному етапі здійснюється оцінка відповідності згенерованого тексту 

набору ключових слів, що був заданий користувачем та розширений. Для обчислення 

цього значення використовується та ж сама натренована LDA модель, що й для 

розширення списку ключових слів. 
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Алгоритм знаходження релевантних тем можна виразити за допомогою матема-

тичної моделі. Нехай   - множина ключових слів, і   - множина тем, що містяться  

у LDA моделі. Своєю чергою, кожна тема    містить   слів      з відповідними ймовірностя-

ми     . Функцію відображення ключового слова       на тему    у суму ймовірностей      

для кожного входження   у   можна виразити у вигляді формули (5). 

                                                           

 

                        

 

Використовуючи функцію   створено словник релевантних тем 

keywords_relevant_topics, як наведено у формулі (6). 

keywords_relevant_topics         
                      (6) 

Послідовність кроків для обчислення оцінки відповідності також записані у 

вигляді формул. Нехай D - документ, оцінку релевантності якого потрібно визначити. 

Тоді    є набором тем, які LDA модель визначила релевантними для документа, що 

виражено у формулі (7). 

(     ) =    ( )             (7) 

Кожна з визначених релевантних тем     має відповідну вагу     для аналізова-

ного документу. Тоді для кожної із визначених релевантних тем тексту визначаємо її 

вклад у загальну оцінку відповідності тексту за допомогою функції  , що виражено  

у формулі (8). 

       keywords_relevant_topics         

keywords_relevant_topics            keywords_relevant_topics   (8) 

Таким чином, загальна оцінка    відповідності документу заданому набору 

ключових слів обчислюється за формулою: 

        
        

                                (9) 

Комбінація тексту з обчисленою оцінкою відповідності є результатами виконання 

останнього кроку та повинна бути повернена користувачу у якості фінального результату 

роботи системи [18]. 

Розробка програмного забезпечення генерації текстів 

Архітектура реалізована за модульним принципом з мікросервісами, кожен з яких 

виконує окрему функцію [4]. 

Основні компоненти: 

 LLM Server — REST-сервер генерації тексту з підтримкою моделей: 

1. GPT-3.5-turbo (через OpenAI API [14]), 

2. LLaMA 3-8B (локально на Google Colab [16] із оптимізацією PEFT + 

QLoRA). 
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Рисунок 2. Архітектура програмного забезпечення 

 LDA Server —  сервер, створений за допомогою мови програмування Python 

3 [5], що реалізує: 

1. Розширення ключових слів за допомогою навченої LDA-моделі; 

2. Обчислення тематичної релевантності згенерованого тексту. 

 LanguageTool — модифікований Java-сервер для перевірки граматики, 

доповнений: 

1. Новим типом правил, що базуються на синтаксичних залежностях; 

2. Підключенням до Dependency Parser через API. 

 Corrector — модуль, що вносить виправлення до тексту згідно з виявленими 

помилками. 

 Dependency Parser — Python-сервер на основі spaCy [7] з моделлю 

uk_core_news_lg для виявлення синтаксичних залежностей у реченнях. 

 Workflow Server (Apache Airflow [12]) — компонент, що координує 

виконання всіх етапів генерації. 

 Database (PostgreSQL [17]) — для збереження запитів, згенерованих текстів, 

оцінок релевантності. 

 DAG Bucket (Google Cloud Storage) — зберігає DAG-файли для Airflow. 

Для генерації використовуються: 

 GPT-3.5-turbo — через OpenAI API (формат: JSONL, role-based). 

 LLaMA 3-8B — локально натренована з використанням transformers, peft, 

bitsandbytes, accelerate, trl. 

Набір даних для fine-tuning сформований із понад 57 тис. документів із 

сумарним обʼємом понад 100 GB (до конвертації), отриманих із порталу ELA KPI [13]. 

Після обробки було створено JSONL-файли, де контекст і текст були розділені. 
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Для виправлення граматичних помилок у згенерованому тексті використо-

вується інструмент LanguageTool, що станом на поточний момент містить 1191 правило 

для перевірки та виправлень текстів української мови, підтримує новий тип правил на 

базі залежностей, використовує spaCy [6] для побудови дерева залежностей речення та 

використовує бібліотеку JEXL [11] для валідації граматичних відповідностей 

(наприклад, роду підмета і присудка). Правила для цього інструменту можна задавати 

декларативно у форматі XML або напряму, надавши Java імплементацію. Вхідними 

даними на цьому етапі є згенерований великою мовною моделлю текст, тоді як 

вихідними — виправлений відповідно до заданих правил текст [18]. Застосування 

даних бібліотек для обробки україномовних текстів та підходу до обробки надвеликих 

масивів даних добре зарекомендував себе в статті [19].  

Для розширення можливостей інструменту LanguageTool було прийнято рішення 

про розробку нового типу правила, в основі якого лежить виявлення залежностей між 

членами речення, що є поширеною задачею обробки природної мови. Зокрема, 

інструмент spaCy підтримує виконання цієї задачі для текстів українською мови. 

Експериментальні дослідження розробленого програмного забезпечення 

Основною метрикою перевірки якості розробленого методу є оцінка відповід-

ності згенерованого тексту набору ключових слів. Змінними параметрами під час 

дослідження ефективності є: 

 використана модель: як у розрізі сімейств, так і за ознакою додаткового 

тренування (fine-tuning); 

 включення кроку розширення набору ключових слів; Результати проведення 

експериментів приведено у табл. 1. 

За результатами експериментального дослідження бачимо, що тренування моделей 

позитивно впливає на якість згенерованого тексту в розрізі його відповідності ключовим 

словами. Також покращенню результатів сприяє використання запропонованого у методі 

кроку розширення набору ключових слів. Важливо зауважити, що цей етап методу має 

позитивний вплив як для оцінки релевантності із використанням базового набору, так  

і розширеного. 

Обидві моделі GPT і LLaMA продемонстрували ефективність, однак навіть 

базова модель GPT виявилась потужнішою за треновану модель LLaMA, проте друга 

виявилася більш гнучкою для локального використання та показала більший відносний 

приріст від процесу fine-tuning. 

Що ж стосується кількостей виправлених помилок, то у більшості випадків 

додаткове тренування моделі провокує ріст цієї метрики. Це пояснюється даними, із 

використанням яких проводиться процес fine-tuning, адже модель здатна вбирати в себе 

не тільки корисні зв’язки із тренувального корпусу, а й інші його специфічні 
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особливості, серед яких можуть бути помилки різного роду. На рис. 3 приведено 

гістограму кількості помилок для кожної із досліджуваних комбінацій. 

Таблиця 1. 

Результати експериментів на відповідність 

Сімейство 

моделей 
Модель 

Наявність 

кроку 

розширення 

списку 

ключових 

слів 

Час 

роботи, с 

Кількість 

виправлени

х помилок 

Оцінка 

релевантності / 

оцінка 

релевантності 

для 

розширеного 

списку 

GPT 

gpt-3.5-

turbo-1106 

Так 50 2 0.0093 / 0.1614 

Ні 20 0 0.0080 / - 

gpt-3.5-

turbo-

1106-ft 

Так 57 4 0.0124 / 0.1816 

Ні 30 0 0.0072 / - 

Llama 

Llama 

3.8B 

Instruct 

Так 96 7 0.0036 / 0.0638 

Ні 81 6 0.0038 / - 

Llama 

3.8B 

Instruct FT 

Так 108 15 0.0048 / 0.1061 

Ні 95 18 0.0023 / - 

 

Як бачимо із наведених графічних матеріалів, немає явної кореляції кількості 

помилок із наявністю кроку розширення набору ключових слів. Натомість можемо 

помітити, що ця метрика є значно вищою для сімейства Llama, що знову підтверджує 

перевагу GPT у якості. 

Також для дослідження ефективності розробленого прототипу програмного 

забезпечення було проведено ряд експериментів із різними моделями та конфігураціями 

з метою встановлення часу виконання як кожного етапу, так і процесу в цілому. 

Досліджені сценарії представлені у табл 2. 

Варто зазначити, що для всіх етапів, тривалість яких не перевищує однієї 

секунди, час внеску в сумарну тривалість виконання вважається сталою величиною  

і складає 0.5 секунди. Результати всіх дослідів приведено в табл. 3. 
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Рисунок 3. Залежність кількості помилок від моделі і набору ключових слів 

Таблиця 2. 

Досліджені сценарії 

Номер сценарію Використана LLM Розширення набору ключових слів 

1 GPT вимкнене 

2 GPT увімкнене 

3 Llama вимкнене 

4 Llama увімкнене 

Таблиця 3. 

Результати проведених експериментів 

Крок / Опис сценарію 

Тривалість 

сценарію 

№1, с 

Тривалість 

сценарію 

№2, с 

Тривалість 

сценарію 

№3, с 

Тривалість 

сценарію 

№4, с 

Службовий крок 

десеріалізації параметру 

моделі 

< 1 < 1 < 1 < 1 

Розширення набору 

ключових слів 

< 1 1 < 1 < 1 
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Закінчення табл. 3 

Крок / Опис сценарію 

Тривалість 

сценарію 

№1, с 

Тривалість 

сценарію 

№2, с 

Тривалість 

сценарію 

№3, с 

Тривалість 

сценарію 

№4, с 

Генерація тексту 11 12 62 64 

Пошук та виправлення 

помилок 

1 2 3 3 

Оцінка відповідності 4 28 3 26 

Збереження результатів < 1 < 1 < 1 < 1 

Сума виконання всіх кроків 17.5 44 69.5 95 

Загальний час виконання 30 57 81 105 

 

Із отриманих даних робимо висновок, що увімкнення кроку розширення набору 

ключових слів впливає насамперед на тривалість виконання етапу оцінки релевантності 

тексту. Окрім цього, помітна суттєва різниця в тривалості генерації тексту між GPT та 

Llama, що зумовлена відмінностями середовищ розгортання. Результати експерименту 

також вказують на наявність певних накладних витрат, що виражено різницею у сумі 

тривалостей виконання кожної із задач та загальним часом виконання процесу [18]. Ці 

величини, а також відношення між ними, представлено на рисунках (4, 5). 

 

Рисунок 4. Тривалості корисних обчислень та накладних витрат 
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Рисунок 5. Відношення корисних обчислень до накладних витрат 

З наведених візуалізацій було зроблено висновок, що хоч накладні витрати та 

присутні в системі, їх тривалість є здебільшого сталою, а відношення до корисних 

обчислень зменшується зі збільшенням навантаження на систему. Загалом такі витрати 

можна пояснити внутрішньою комунікацією між компонентами Apache Airflow в 

межах кластера та затратами на підготовку середовища до виконання процесу. 

Висновки 

У роботі розроблено метод генерації текстів українською мовою на основі таких 

етапів як розширення набору ключових слів, генерація первинного тексту,  виправлення 

граматичних помилок та оцінки релевантності згенерованого тексту на основі LLM та 

LDA моделей.  

Представлено архітектуру програмного забезпечення, засновану на мікросервіс-

ному підході та використанні Apache Airflow для керування робочими процесами. 

Розроблено програмне забезпечення, що автоматизує процес генерації тексту на основі 

заданої теми та ключових слів, із подальшим виправленням граматичних помилок.  

У межах дослідження виконано fine-tuning моделей GPT-3.5-turbo та LLaMA 3-8B на 

основі попередньо зібраного набору даних українською мовою. В якості засобу перевірки 

граматики текстів українською мовою використано LanguageTool, який було модифіковано 

додаванням нового типу правил, що враховують синтаксичні залежності між словами.  

У якості морфоаналізатора використано бібліотеку SpaCy. Програмне за безпечення 

продемонструвало високу якість генерації, релевантність створених текстів до тематики та 

здатність виявляти складні граматичні помилки, зокрема помилки узгодження.  

Проведено дослідження ефективності використання великих мовних моделей  

у поєднанні з морфологічним аналізом та тематичним моделюванням для задачі генерації 
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українськомовних текстів. Виявлено, що тренування моделей позитивно впливає на 

якість згенерованого тексту в розрізі його відповідності ключовим словам. Також 

поліпшенню результатів сприяє використання розширення набору ключових слів  

Отримані результати можуть бути використані для побудови інтелектуальних 

систем автоматизованого створення контенту українською мовою в сферах освіти, 

медіа та документообігу. 
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