
© A. Lavrov, M. Lytvynenko, O. Syrota, P. Rodionov A. Humeniuk

UDC 004.75

A. Lavrov, M. Lytvynenko,

O. Syrota, P. Rodionov A. Humeniuk

SERVICE DISCOVERY AT SCALE: LIMITATIONS OF CENTRALIZED MODELS

AND DECENTRALIZED ALTERNATIVES

Abstract: Service discovery is a critical component in cloud-native and microservice-

based architecture, enabling dynamic service registration and resolution. While centralized

service discovery systems such as Consul, Eureka, and Kubernetes DNS are widely adopted,

they introduce scalability limitations, single points of failure, and operational complexity

when deployed at scale. This paper investigates the inherent challenges of centralized service

discovery models in large-scale, distributed environments and evaluates decentralized

alternatives. The aim of the research is to show how decentralized service discovery model

can improve system availability and make a large-scale distributed system more resilient and

resistant to failure.

Keywords: service discovery, distributed systems, cloud-native architecture,

microservices, gossip protocol, decentralized discovery, scalability, fault tolerance.

Introduction

In today's technological landscape, enterprise-grade systems are increasingly designed

to be cloud-native to meet the performance, scalability, and resilience demands of modern

workloads. Well-architected cloud-native systems typically adhere to a defined set of

principles such as those outlined in the Reactive Manifesto[1].

Within modern software engineering, several architectural paradigms have emerged to

support such systems, including Service-Oriented Architecture (SOA), Microservices

Architecture, and Event-Driven Architecture (EDA). Despite their differences, all these

paradigms share a common requirement: independent components must be able to

communicate effectively. Some architectures emphasize asynchronous, message-driven

interactions, while others are built around synchronous request – response models.

However, regardless of the interaction style, one foundational capability is essential:

service discovery.

“Service discovery the ability for components to dynamically locate and connect to

one another in a fluid, often ephemeral environment.” – Sam Newman, “Building

Microservices”, O’Reilly, 2015[2].

Several patterns exist for implementing service discovery, including:

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1 (48) 2026

 ISSN 1560-8956 144

Client-side service discovery

Figure 1. Client-side service discovery [3]

Client-side service discovery[4] is a decentralized service resolution pattern in which

the service consumer is responsible for performing service instance resolution and endpoint

selection. Upon invocation, the client queries a service registry – a distributed or centralized

repository that maintains the metadata (e.g., network addresses, health status, capabilities) of

active service instances. The client then applies a selection strategy (e.g., round-robin, least

connections, latency-aware) to determine the target instance and establish a direct

communication channel.

In this pattern, the registry functions as a passive directory service, while the

discovery logic and load-balancing responsibility reside entirely within the client. This

reduces intermediate network hops but increases coupling between the client and the service

registry API.

Server-side (proxy-based) service discovery

Figure 2. Server-side service discovery [3]

Server-side service discovery[5] is a centralized service resolution pattern in which the

service consumer sends a request to a fixed network endpoint (often a load balancer, gateway,

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1 (48) 2026

 ISSN 1560-8956 145

or API proxy) without performing direct service instance resolution. The intermediary

component queries the service registry to determine the set of healthy service instances and

performs request routing or load balancing on behalf of the client.

In this pattern, the discovery logic and routing decisions are abstracted away from

the client, reducing its complexity and eliminating the need for registry integration in client

code. However, it introduces an additional network hop and potential single points of failure

if the routing layer is not highly available.

While the service discovery approaches are effective in many scenarios, they all share

a fundamental architectural limitation: centralization. Whether through a DNS-based

mechanism, a dedicated service registry (such as Eureka or Consul), these systems often

introduce single points of failure and scalability bottlenecks. Such limitations become

particularly problematic in large-scale or multi-region deployments, where high availability

and fault tolerance are critical.

Centralized Models: Strengths and Limitations

At this part we will dig deeper into centralized models of service discovery and

analyse them more thoughtfully. Before moving forward, it is important to clearly define the

difference between centralized and decentralized models. A centralized model can, in fact, be

physically distributed across multiple nodes or datacenters. This approach can make sense in

terms of operational efficiency and load distribution. However, even when physically

distributed, such systems remain logically centralized because they still require a single,

consistent view of state, achieved through coordination mechanisms like consensus

(RAFT[6], PAXOX[7]). Therefore, in this article, centralization should be understood as a

logical property – referring to reliance on a single, authoritative control plane – rather than a

purely physical deployment characteristic.

Benefits of Centralized Service Discovery

Despite their limitations, centralized service discovery systems provide several

practical advantages that have contributed to their widespread adoption in production

environments. Firstly, they offer a single source of truth for service metadata, allowing all

clients and infrastructure components to resolve service locations consistently. Consistency in

one of the most important characteristics that we have considered when design a distributed

system. (CAP theorem[8]). In addition, centralization simplifies observability, auditing, and

management by providing a unified control point for service registration, health status, and

configuration.

Additionally, centralized discovery models often support fine-grained access control,

version-aware routing, and service tagging, all of which are critical in complex microservice

environments where behavioral control and policy enforcement are required. These benefits

make centralized service discovery an attractive and pragmatic choice for many enterprises

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1 (48) 2026

 ISSN 1560-8956 146

and cloud-native architectures, particularly where consistency, predictability, and operational

control are priorities.

Problem statement

While centralized service discovery systems such as Consul, Kubernetes DNS

(CoreDNS + etcd), and similar registry-based solutions have proven effective in moderate-

scale deployments, their architectural characteristics introduce significant challenges in large-

scale or globally distributed environments. Those systems create inherent limitations:

1. Single Points of Failure and Bottlenecks[9] – Centralized components can become

both a performance bottleneck and a critical dependency whose failure affects the availability

of the entire service discovery layer.

2. Scaling Constraints Under High Churn[10] – In high-velocity environments where

services are frequently created, destroyed, or relocated, write throughput limits, leader

election delays, and quorum dependencies introduce latency and instability.

3. Operational Overhead – Maintaining low-latency, highly available centralized

registries demands extensive capacity planning, observability, and tuning, increasing the

operational burden on platform engineering teams.

Even hybrid solutions like Consul Connect, which combine centralized service

registration with decentralized failure detection, ultimately depend on a consistent central

control plane that inherits the same scaling and availability constraints. In Kubernetes, DNS-

based discovery depends on CoreDNS and etcd, both of which exhibit performance

degradation and resolution failures under extreme load [11].

These limitations suggest that as systems grow – particularly in multi-region, multi-

availability-zone topologies – the cost and complexity of sustaining centralized service

discovery at scale becomes prohibitive, motivating the need to investigate decentralized or

hybrid approaches that can better tolerate failures, reduce bottlenecks, and adapt to dynamic

workloads.

This problem can also be analyzed through the lens of reliability engineering theory.

A distributed system can be represented as a set of N nodes, each characterized by its

individual reliability Ri(t). When all nodes depend on a single centralized component, the

overall system behaves as a series system. In such a configuration, the failure of any single

component inevitably leads to the failure of the entire system. The reliability of a series

system is expressed as:

In contrast, when the nodes are organized in a parallel system, the system remains

operational as long as at least one component continues to function. The reliability of a

parallel configuration is defined by:

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1 (48) 2026

 ISSN 1560-8956 147

Or more generally:

To illustrate this with a practical example, assume that the availability of a single

machine in a service discovery cluster is 0.99. For a mid-size cluster consisting of 10

machines, the reliability under a series system is:

This implies that even with highly reliable individual nodes, the cumulative reliability

of a centralized (series) model decreases substantially as the cluster size grows.

By comparison, in a parallel system of the same 10 machines, the reliability is:

This near-perfect reliability demonstrates the advantage of decentralized or replicated

approaches, where the system continues to function even if a significant subset of nodes fails.

Figure 3. Series System vs Parallel system comparison

Decentralized Alternatives

Decentralization, on the other hand, is a concept that has become increasingly popular

in recent years. There are many reasons for this shift, but in our context, the most relevant are

system availability and fault tolerance. In modern cloud computing, component failures are

not exceptional – they are expected. We must embrace this reality and design systems with

resilience as a core principle. A good reference point here is the chaos engineering culture,

which promotes proactively testing systems against failure scenarios to ensure they can

withstand and recover from them.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1 (48) 2026

 ISSN 1560-8956 148

The most important and distinguishing characteristic between distributed and

decentralized systems is how resources and responsibilities are allocated. In a decentralized

system, resources must be necessarily spread across all participating processes or nodes,

ensuring that no single entity holds exclusive control. In a distributed system, by contrast,

resources only need to be sufficiently spread to meet operational requirements, which may

still leave certain components as critical dependencies.

This distinction makes decentralized systems inherently more resilient to single points

of failure. In a truly decentralized architecture, the workload is necessarily shared among all

members, eliminating reliance on any individual node. A clear example can be seen by

comparing Bitcoin and Visa:

 Visa, while highly distributed, still operates through centralized infrastructure.

A system outage – though infrequent – can disrupt payment processing globally, posing a risk

to transaction availability and security.

 Bitcoin, as a decentralized ledger, has no single control point. The probability of

the entire system failing is significantly lower.

Of course, decentralized peer-to-peer systems like Bitcoin are not without their own

challenges – for instance, vulnerabilities such as the 51% attack – but these issues fall

outside the scope of this research.

Of course, while gaining the following benefits, there is a price to pay — in our case,

that price is consistency[12]. As we have already stated, service discovery is the backbone of

any distributed, service-oriented system, and in this context, availability is far more important

than strict consistency. More precisely, we trade a strong consistency model for eventual

consistency to achieve higher availability and tolerance to network-partitioning[13].

Figure 4. CAP theorem visualization

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1 (48) 2026

 ISSN 1560-8956 149

An additional point supporting this approach is that in large-scale distributed systems,

the environment changes so rapidly that maintaining service discovery as eventually

consistent and ephemeral is often not a significant problem.

 Considering the growing importance of cloud platforms in business operations, more

companies are paying closer attention to decentralization. This article does not advocate for

building only fully decentralized systems. In practice, decentralized architectures can be

complex, difficult to design, and challenging to debug and maintain.

Instead, our goal is to take proven concepts from decentralization – particularly

those that enhance availability and fault tolerance – and apply them within well-established

distributed system paradigms. By selectively integrating these principles, organizations can

improve resilience without incurring the full complexity and operational overhead of a purely

decentralized design.

Possible solutions and research directions

As an alternative, the following paper proposes a decentralized design with no central

coordinator. Discovery is removed as a standalone service and pushed into domain-oriented

services. Each service periodically exchanges state with randomly selected peers, allowing

knowledge of the overall system to converge over time. This can be realized with a gossip-

based (epidemic) protocol [14].

Figure 5. Gossip communication between nodes

The gossip protocol is a decentralized peer-to-peer communication mechanism

designed to distribute information efficiently across large-scale distributed systems. Its core

principle is that each node periodically exchanges messages with a randomly selected subset

of other nodes. Through these repeated interactions, the system eventually achieves message

dissemination with high probability. In simpler terms, the gossip protocol allows nodes to

develop a global view of the system through many small, localized exchanges.

All nodes communicate with each other using the UDP protocol. UDP is the logical

choice in this context because it is connectionless, eliminating the need for session

establishment and teardown as required by TCP. This reduces protocol overhead and avoids the

additional latency introduced by handshakes. As a result, UDP enables lightweight, low-latency

message exchange while minimizing the amount of traffic propagated through the network.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1 (48) 2026

 ISSN 1560-8956 150

When discussing fully distributed systems, it is essential to consider the initial state of

a node as it joins a cluster. A newly initialized node must be able to discover at least

a minimal set of peers – typically two or more active nodes – to begin participating in the

dissemination process. Hardcoding such addresses in configuration files is impractical, as

cloud environments are inherently dynamic and subject to frequent changes over time.

Instead, an effective solution can be drawn from existing peer-to-peer (P2P) systems, such as

BitTorrent, using seed nodes.

In a decentralized network, seed nodes function as stable entry points that facilitate the

onboarding of new participants. They provide an initial "directory" of reachable peers,

enabling new nodes to bootstrap their connectivity, synchronize with the network, and

subsequently join the gossip-based dissemination process. Once integrated, the new node can

rely entirely on peer-to-peer interactions, thus preserving the decentralized nature of the

system while ensuring efficient and fault-tolerant network membership discovery.

Although automatic peer discovery using protocols such as ARP may seem appealing,

it is limited to a single broadcast domain and is unsuitable for multi-subnet or cloud-based

environments where network segmentation and virtual networking are common. Additionally,

ARP-based discovery introduces unnecessary broadcast traffic and lacks built-in mechanisms

for validating the liveness or role of discovered peers. In contrast, a seed node setup provides

a scalable, controlled, and cloud-friendly approach that avoids these drawbacks while

maintaining predictable and secure cluster formation.

Main formula for the number of seed nodes:

where:

3 – the minimum number of nodes for redundancy,

N – the total number of nodes in the cluster,

2 – an additional offset used when N ≥ 1.

Per Availability Zone or physically separated cluster:

All of the concepts outlined above are viable but not trivial to implement. Moreover, the

proposed approach should aim to reduce operational overhead while making the associated

benefits easier to realize. Gossip algorithm implementation can be complex and should ideally

be abstracted away from the compute node itself. Since gossiping is primarily an infrastructure-

level concern rather than application logic, it can be implemented using a sidecar pattern. In this

model, each compute node runs alongside a dedicated sidecar container responsible for gossip-

based communication and client-side load balancing. This separation streamlines the node’s

core responsibilities while enabling resilient and scalable service discovery.

The proposed solution also functions as a proxy, routing requests to the appropriate

dedicated node based on the current state of the internal gossip membership list. It can support

various load-balancing algorithms, allowing requests to be directed to the destination host

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1 (48) 2026

 ISSN 1560-8956 151

using a strategy best suited for the specific use case. Considering eventual consistency of the

system, it is reasonable to expect occasional delays or discrepancies in the membership list.

For example, a specific Node Y of Service Z might be down, but this information has not yet

been updated in the list. In such cases, traffic can be rerouted to another available instance of

Node Y. By following this implementation approach, the target service remains decoupled

and unaware of infrastructure details, simplifying deployment and cleanly separating business

logic from cross-cutting concerns.

Figure 6. Sidecar deployment approach

Conclusion and Future Work

This work examined the critical role of service discovery as a foundational component

in modern distributed, service-oriented systems. The discussion highlighted its importance for

ensuring reliable communication and scalability, while also identifying the potential risks

associated with logically centralized discovery models. By exposing these limitations, the

study emphasized the need for alternative approaches that enhance availability, resilience and

reduce operational fragility.

Building on these findings, future research will adopt a more practical perspective,

focusing on the design and implementation of a service discovery mechanism that preserves

the identified architectural benefits while minimizing operational overhead. This will include

developing a working prototype, refining implementation details, and ensuring seamless

integration into existing distributed environments. We will also address the network-flooding

behavior inherent in epidemic communication, adding advanced techniques to reduce

overhead.

Further work will also involve conducting performance evaluations and comparative

analyses between centralized and decentralized discovery models in real-world, cloud-based

deployments.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1 (48) 2026

 ISSN 1560-8956 152

REFERENCES

1. The Reactive Manifesto – Available from: https://www.reactivemanifesto.org/

2. Sam Newman. Building Microservices 2 Edition / Sam Newman // Building

Microservices 2 Edition. 30 April 2021. – P. 157-174.

3. What is Service Discovery – Available from: https://newsletter.scalablethread.

com/p/what-is-service-discovery

4. Pattern: Client-side service discovery – Available from: https://microservices.io/

patterns/client-side-discovery.html

5. Pattern: Server-side service discovery – Available from: https://microservices.io/

patterns/server-side-discovery.html

6. D. Ongaro, J. Ousterhout. In search of an understandable consensus algorithm

[Electronic resource] / D. Ongaro, J. Ousterhout // USENIX ATC'14: Proceedings of the 2014

USENIX conference on USENIX Annual Technical Conference, 19-20 June 2014. –

Philadelphia, PA, USA, 2014. – Available from: https://dl.acm.org/doi/10.5555/2643634.

2643666

7. Paxos Made Simple – Available from: https://lamport.azurewebsites.net/pubs/

paxos-simple.pdf

8. S. Gilbert, N. Lynch. Perspectives on the CAP Theorem [Electronic resource] /

S. Gilbert, N. Lynch // Computer. – 2012. – Vol. 45, iss. 2 – P. 30-36. – Available from:

https://doi.org/10.1109/MC.2011.389

9. Amazon EKS announces native support for autoscaling CoreDNS Pods –

Available from: https://aws.amazon.com/about-aws/whats-new/2024/05/amazon-eks-native-

support-autoscaling-coredns-pods/

10. Service discovery at Stripe – Available from: https://stripe.com/blog/service-

discovery-at-stripe

11. https://dl.acm.org/doi/abs/10.1145/3284028.3284034#core-history

12. "The art of service discovery at scale" by Nitesh Kant – Available from:

https://www.youtube.com/watch?v=27ynM2tbNXM&t=983s

13. Airbnb Service Discovery: Past, Present, Future (Challenges of Change) – Chase

Childers, Airbnb – Available from: https://www.youtube.com/watch?v=XQjOhJtw1wg&t=

2023s

14. S. Boyd, A. Ghosh, B. Prabhakar, D. Shah. Gossip algorithms: design, analysis

and applications [Electronic resource] / S. Boyd, A. Ghosh, B. Prabhakar, D. Shah //

Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications

Societies, 13-17 March 2005. – Miami, FL, USA, 2005. – Available from:

https://doi.org/10.1109/INFCOM.2005.1498447

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1 (48) 2026

 ISSN 1560-8956 153

https://www.reactivemanifesto.org/
https://microservices.io/%20patterns/client-side-discovery.html
https://microservices.io/%20patterns/client-side-discovery.html
https://microservices.io/%20patterns/server-side-discovery.html
https://microservices.io/%20patterns/server-side-discovery.html
https://dl.acm.org/doi/10.5555/2643634.%202643666
https://dl.acm.org/doi/10.5555/2643634.%202643666
https://lamport.azurewebsites.net/pubs/%20paxos-simple.pdf
https://lamport.azurewebsites.net/pubs/%20paxos-simple.pdf
https://doi.org/10.1109/MC.2011.389
https://aws.amazon.com/about-aws/whats-new/2024/05/amazon-eks-native-support-autoscaling-coredns-pods/
https://aws.amazon.com/about-aws/whats-new/2024/05/amazon-eks-native-support-autoscaling-coredns-pods/
https://stripe.com/blog/service-discovery-at-stripe
https://stripe.com/blog/service-discovery-at-stripe
https://dl.acm.org/doi/abs/10.1145/3284028.3284034#core-history
https://www.youtube.com/watch?v=27ynM2tbNXM&t=983s
https://www.youtube.com/watch?v=XQjOhJtw1wg&t=%202023s
https://www.youtube.com/watch?v=XQjOhJtw1wg&t=%202023s
https://doi.org/10.1109/INFCOM.2005.1498447

	Binder2
	Виправлено_ Деведжіогуллари
	Виправлено_ Луцак_Ткач
	Виправлено_OliinykPonochovnyy
	Виправлено_Oliinyk-Verkhovska
	Виправлено_Pasko_Drozdovich_MED
	виправлено_Антюк Ліхоузова Олійник укр
	Виправлено_Бачкала_Тимошин_2026_1
	Виправлено_БулботкаНадія
	Виправлено_Гавриленко, Мягкий
	Виправлено_Довгополюк_Олійник_Кувічка
	Виправлено_Жигорін_Олійник
	Виправлено_Кривоносюк_Стеценко
	Виправлено_Куземськии_Лісовиченко
	Виправлено_Лавров
	Виправлено_Матуляк_Ліхоузова_Олійник_укр
	Виправлено_Михайленко
	Виправлено_Павлов,_Головченко,_Кущ1
	Виправлено_Петров_Батрак_Цьопа
	Виправлено_Проценко_Стеценко
	Виправлено_Пустовойт_Батракт_Цьопа
	Виправлено_Рудяков
	Виправлено_Терентьєв
	Виправлено_Топчій
	Виправлено_Тюляков
	Виправлено_Швидченко
	Виправлено_Шевчук Ліхоузова Олійник укр

	УДК
	UDK
	Про авторів

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 2
 Page size: same as page 2

 D:20260204085649

 Blanks
 Always
 2
 1
 1
 720
 221
 0
 1
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 2

 CurrentAVDoc

 SameAsPage
 BeforeCur

 QITE_QuiteImposingPlus5
 Quite Imposing Plus 5.3d
 Quite Imposing Plus 5
 1

 0
 2

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 3 to page 327; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 70.87 points, vertical 41.10 points
 Colour: Default (black)
 Prefix text: ''
 Suffix text: ''

 D:20260204085948

 1
 1

 BR

 1
 1
 1
 1
 1
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1419
 194
 0
 1
 R0
 12.0000

 Odd
 3
 SubDoc
 327

 CurrentAVDoc

 [Doc:FileName]
 70.8661
 41.1024

 QITE_QuiteImposingPlus5
 Quite Imposing Plus 5.3d
 Quite Imposing Plus 5
 1

 2
 327
 326
 3f844fa1-a8ab-40cd-b8b6-53c8d8b87612
 163

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 3 to page 327; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 70.87 points, vertical 41.10 points
 Colour: Default (black)
 Prefix text: ''
 Suffix text: ''

 D:20260204085954

 1
 1

 BL

 1
 1
 1
 1
 1
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1419
 194

 0
 1
 R0
 12.0000

 Even
 3
 SubDoc
 327

 CurrentAVDoc

 [Doc:FileName]
 70.8661
 41.1024

 QITE_QuiteImposingPlus5
 Quite Imposing Plus 5.3d
 Quite Imposing Plus 5
 1

 3
 327
 325
 e368d55f-4793-47d2-9e18-7b4dca5ee21e
 162

 1

 HistoryList_V1
 qi2base

