MiKBiTOMYHIT HAYKOBO-TEXHIYHUI 30IpPHUK «ATaNTHBHI CHCTEMH aBTOMAaTHYHOTO yrpasiiHas» Ne 1 (48) 2026

UDC 004.75
A. Lavrov, M. Lytvynenko,
O. Syrota, P. Rodionov A. Humeniuk

SERVICE DISCOVERY AT SCALE: LIMITATIONS OF CENTRALIZED MODELS
AND DECENTRALIZED ALTERNATIVES

Abstract: Service discovery is a critical component in cloud-native and microservice-
based architecture, enabling dynamic service registration and resolution. While centralized
service discovery systems such as Consul, Eureka, and Kubernetes DNS are widely adopted,
they introduce scalability limitations, single points of failure, and operational complexity
when deployed at scale. This paper investigates the inherent challenges of centralized service
discovery models in large-scale, distributed environments and evaluates decentralized
alternatives. The aim of the research is to show how decentralized service discovery model
can improve system availability and make a large-scale distributed system more resilient and
resistant to failure.

Keywords: service discovery, distributed systems, cloud-native architecture,
microservices, gossip protocol, decentralized discovery, scalability, fault tolerance.

Introduction

In today's technological landscape, enterprise-grade systems are increasingly designed
to be cloud-native to meet the performance, scalability, and resilience demands of modern
workloads. Well-architected cloud-native systems typically adhere to a defined set of
principles such as those outlined in the Reactive Manifesto[1].

Within modern software engineering, several architectural paradigms have emerged to
support such systems, including Service-Oriented Architecture (SOA), Microservices
Architecture, and Event-Driven Architecture (EDA). Despite their differences, all these
paradigms share a common requirement: independent components must be able to
communicate effectively. Some architectures emphasize asynchronous, message-driven
interactions, while others are built around synchronous request — response models.

However, regardless of the interaction style, one foundational capability is essential:
service discovery.

“Service discovery the ability for components to dynamically locate and connect to
one another in a fluid, often ephemeral environment.” — Sam Newman, “Building
Microservices”, O Reilly, 2015[2].

Several patterns exist for implementing service discovery, including:

© A. Lavrov, M. Lytvynenko, O. Syrota, P. Rodionov A. Humeniuk
144 ISSN 1560-8956

MiKBiTOMYHIT HAYKOBO-TEXHIYHUI 30IpPHUK «ATaNTHBHI CHCTEMH aBTOMAaTHYHOTO yrpasiiHas» Ne 1 (48) 2026

Client-side service discovery

call service #1

©® @ _

register
. get address
for

service #1

Service #1

<€—register—

Service #2
Client

register

Service #3

ScalableThread.com

Figure 1. Client-side service discovery [3]

Client-side service discovery[4] is a decentralized service resolution pattern in which
the service consumer is responsible for performing service instance resolution and endpoint
selection. Upon invocation, the client queries a service registry — a distributed or centralized
repository that maintains the metadata (e.g., network addresses, health status, capabilities) of
active service instances. The client then applies a selection strategy (e.g., round-robin, least
connections, latency-aware) to determine the target instance and establish a direct
communication channel.

In this pattern, the registry functions as a passive directory service, while the
discovery logic and load-balancing responsibility reside entirely within the client. This
reduces intermediate network hops but increases coupling between the client and the service
registry API.

Server-side (proxy-based) service discovery

call service #1

call service #1

Service #1
Client

get address Service #2

.reqister
for

service #1 .
register
. Service #3

< register

ScalableThread.com

Figure 2. Server-side service discovery [3]

Server-side service discovery[5] is a centralized service resolution pattern in which the
service consumer sends a request to a fixed network endpoint (often a load balancer, gateway,

ISSN 1560-8956 145

MiKBiTOMYHIT HAYKOBO-TEXHIYHUI 30IpPHUK «ATaNTHBHI CHCTEMH aBTOMAaTHYHOTO yrpasiiHas» Ne 1 (48) 2026

or API proxy) without performing direct service instance resolution. The intermediary
component queries the service registry to determine the set of healthy service instances and
performs request routing or load balancing on behalf of the client.

In this pattern, the discovery logic and routing decisions are abstracted away from
the client, reducing its complexity and eliminating the need for registry integration in client
code. However, it introduces an additional network hop and potential single points of failure
if the routing layer is not highly available.

While the service discovery approaches are effective in many scenarios, they all share
a fundamental architectural limitation: centralization. Whether through a DNS-based
mechanism, a dedicated service registry (such as Eureka or Consul), these systems often
introduce single points of failure and scalability bottlenecks. Such limitations become
particularly problematic in large-scale or multi-region deployments, where high availability
and fault tolerance are critical.

Centralized Models: Strengths and Limitations

At this part we will dig deeper into centralized models of service discovery and
analyse them more thoughtfully. Before moving forward, it is important to clearly define the
difference between centralized and decentralized models. A centralized model can, in fact, be
physically distributed across multiple nodes or datacenters. This approach can make sense in
terms of operational efficiency and load distribution. However, even when physically
distributed, such systems remain logically centralized because they still require a single,
consistent view of state, achieved through coordination mechanisms like consensus
(RAFT[6], PAXOX[7]). Therefore, in this article, centralization should be understood as a
logical property — referring to reliance on a single, authoritative control plane — rather than a
purely physical deployment characteristic.

Benefits of Centralized Service Discovery

Despite their limitations, centralized service discovery systems provide several
practical advantages that have contributed to their widespread adoption in production
environments. Firstly, they offer a single source of truth for service metadata, allowing all
clients and infrastructure components to resolve service locations consistently. Consistency in
one of the most important characteristics that we have considered when design a distributed
system. (CAP theorem[8]). In addition, centralization simplifies observability, auditing, and
management by providing a unified control point for service registration, health status, and
configuration.

Additionally, centralized discovery models often support fine-grained access control,
version-aware routing, and service tagging, all of which are critical in complex microservice
environments where behavioral control and policy enforcement are required. These benefits
make centralized service discovery an attractive and pragmatic choice for many enterprises

146 ISSN 1560-8956

MiKBiTOMYHIT HAYKOBO-TEXHIYHUI 30IpPHUK «ATaNTHBHI CHCTEMH aBTOMAaTHYHOTO yrpasiiHas» Ne 1 (48) 2026

and cloud-native architectures, particularly where consistency, predictability, and operational
control are priorities.

Problem statement

While centralized service discovery systems such as Consul, Kubernetes DNS
(CoreDNS + etcd), and similar registry-based solutions have proven effective in moderate-
scale deployments, their architectural characteristics introduce significant challenges in large-
scale or globally distributed environments. Those systems create inherent limitations:

1. Single Points of Failure and Bottlenecks[9] — Centralized components can become
both a performance bottleneck and a critical dependency whose failure affects the availability
of the entire service discovery layer.

2. Scaling Constraints Under High Churn[10] — In high-velocity environments where
services are frequently created, destroyed, or relocated, write throughput limits, leader
election delays, and quorum dependencies introduce latency and instability.

3. Operational Overhead — Maintaining low-latency, highly available centralized
registries demands extensive capacity planning, observability, and tuning, increasing the
operational burden on platform engineering teams.

Even hybrid solutions like Consul Connect, which combine centralized service
registration with decentralized failure detection, ultimately depend on a consistent central
control plane that inherits the same scaling and availability constraints. In Kubernetes, DNS-
based discovery depends on CoreDNS and etcd, both of which exhibit performance
degradation and resolution failures under extreme load [11].

These limitations suggest that as systems grow — particularly in multi-region, multi-
availability-zone topologies — the cost and complexity of sustaining centralized service
discovery at scale becomes prohibitive, motivating the need to investigate decentralized or
hybrid approaches that can better tolerate failures, reduce bottlenecks, and adapt to dynamic
workloads.

This problem can also be analyzed through the lens of reliability engineering theory.
A distributed system can be represented as a set of N nodes, each characterized by its
individual reliability Ri(t). When all nodes depend on a single centralized component, the
overall system behaves as a series system. In such a configuration, the failure of any single
component inevitably leads to the failure of the entire system. The reliability of a series
system is expressed as:

Rsgrian(t) = Ri(t) - Ry(¢) - R3(t) = HRi(t)

In contrast, when the nodes are organized in a parallel system, the system remains
operational as long as at least one component continues to function. The reliability of a
parallel configuration is defined by:

ISSN 1560-8956 147

MiKBiTOMYHIT HAYKOBO-TEXHIYHUI 30IpPHUK «ATaNTHBHI CHCTEMH aBTOMAaTHYHOTO yrpasiiHas» Ne 1 (48) 2026

RpararLeL(t) =1 — [(1 - Rl(t))(l — R, (t))(l - R3(t))]
Or more generally:

n

Rpararrer(t) =1 — l_[(l - Ri(t))
i=1
To illustrate this with a practical example, assume that the availability of a single
machine in a service discovery cluster is 0.99. For a mid-size cluster consisting of 10
machines, the reliability under a series system is:
0.99'° ~ 0.904
This implies that even with highly reliable individual nodes, the cumulative reliability
of a centralized (series) model decreases substantially as the cluster size grows.
By comparison, in a parallel system of the same 10 machines, the reliability is:
Rpararer = 1 — (0.01)1° = 0.9999
This near-perfect reliability demonstrates the advantage of decentralized or replicated
approaches, where the system continues to function even if a significant subset of nodes fails.

Reliability vs Cluster Size (Single machine reliability = 0.99)
1.0t
0.8f

0.6F

0.4F

System Reliability R(t)

0.2F

Series System
Parallel System

25 50 75 100 125 150 175 200
Number of machines in cluster (n)

0.0

Figure 3. Series System vs Parallel system comparison

Decentralized Alternatives

Decentralization, on the other hand, is a concept that has become increasingly popular
in recent years. There are many reasons for this shift, but in our context, the most relevant are
system availability and fault tolerance. In modern cloud computing, component failures are
not exceptional — they are expected. We must embrace this reality and design systems with
resilience as a core principle. A good reference point here is the chaos engineering culture,
which promotes proactively testing systems against failure scenarios to ensure they can
withstand and recover from them.

148 ISSN 1560-8956

MiKBiTOMYHIT HAYKOBO-TEXHIYHUI 30IpPHUK «ATaNTHBHI CHCTEMH aBTOMAaTHYHOTO yrpasiiHas» Ne 1 (48) 2026

The most important and distinguishing characteristic between distributed and
decentralized systems is how resources and responsibilities are allocated. In a decentralized
system, resources must be necessarily spread across all participating processes or nodes,
ensuring that no single entity holds exclusive control. In a distributed system, by contrast,
resources only need to be sufficiently spread to meet operational requirements, which may
still leave certain components as critical dependencies.

This distinction makes decentralized systems inherently more resilient to single points
of failure. In a truly decentralized architecture, the workload is necessarily shared among all
members, eliminating reliance on any individual node. A clear example can be seen by
comparing Bitcoin and Visa:

e Visa, while highly distributed, still operates through centralized infrastructure.
A system outage — though infrequent — can disrupt payment processing globally, posing a risk
to transaction availability and security.

« Bitcoin, as a decentralized ledger, has no single control point. The probability of
the entire system failing is significantly lower.

Of course, decentralized peer-to-peer systems like Bitcoin are not without their own
challenges — for instance, vulnerabilities such as the 51% attack — but these issues fall
outside the scope of this research.

Of course, while gaining the following benefits, there is a price to pay — in our case,
that price is consistency[12]. As we have already stated, service discovery is the backbone of
any distributed, service-oriented system, and in this context, availability is far more important
than strict consistency. More precisely, we trade a strong consistency model for eventual

consistency to achieve higher availability and tolerance to network-partitioning[13].
7 T LI Ty

Cahisistency

Figure 4. CAP theorem visualization

ISSN 1560-8956 149

MiKBiTOMYHIT HAYKOBO-TEXHIYHUI 30IpPHUK «ATaNTHBHI CHCTEMH aBTOMAaTHYHOTO yrpasiiHas» Ne 1 (48) 2026

An additional point supporting this approach is that in large-scale distributed systems,
the environment changes so rapidly that maintaining service discovery as eventually
consistent and ephemeral is often not a significant problem.

Considering the growing importance of cloud platforms in business operations, more
companies are paying closer attention to decentralization. This article does not advocate for
building only fully decentralized systems. In practice, decentralized architectures can be
complex, difficult to design, and challenging to debug and maintain.

Instead, our goal is to take proven concepts from decentralization — particularly
those that enhance availability and fault tolerance — and apply them within well-established
distributed system paradigms. By selectively integrating these principles, organizations can
improve resilience without incurring the full complexity and operational overhead of a purely
decentralized design.

Possible solutions and research directions

As an alternative, the following paper proposes a decentralized design with no central
coordinator. Discovery is removed as a standalone service and pushed into domain-oriented
services. Each service periodically exchanges state with randomly selected peers, allowing
knowledge of the overall system to converge over time. This can be realized with a gossip-
based (epidemic) protocol [14].

O —@
Q‘/ 040

Figure 5. Gossip communication between nodes

The gossip protocol is a decentralized peer-to-peer communication mechanism
designed to distribute information efficiently across large-scale distributed systems. Its core
principle is that each node periodically exchanges messages with a randomly selected subset
of other nodes. Through these repeated interactions, the system eventually achieves message
dissemination with high probability. In simpler terms, the gossip protocol allows nodes to
develop a global view of the system through many small, localized exchanges.

All nodes communicate with each other using the UDP protocol. UDP is the logical
choice in this context because it is connectionless, eliminating the need for session
establishment and teardown as required by TCP. This reduces protocol overhead and avoids the
additional latency introduced by handshakes. As a result, UDP enables lightweight, low-latency
message exchange while minimizing the amount of traffic propagated through the network.

150 ISSN 1560-8956

MiKBiTOMYHIT HAYKOBO-TEXHIYHUI 30IpPHUK «ATaNTHBHI CHCTEMH aBTOMAaTHYHOTO yrpasiiHas» Ne 1 (48) 2026

When discussing fully distributed systems, it is essential to consider the initial state of
a node as it joins a cluster. A newly initialized node must be able to discover at least
a minimal set of peers — typically two or more active nodes — to begin participating in the
dissemination process. Hardcoding such addresses in configuration files is impractical, as
cloud environments are inherently dynamic and subject to frequent changes over time.
Instead, an effective solution can be drawn from existing peer-to-peer (P2P) systems, such as
BitTorrent, using seed nodes.

In a decentralized network, seed nodes function as stable entry points that facilitate the
onboarding of new participants. They provide an initial "directory” of reachable peers,
enabling new nodes to bootstrap their connectivity, synchronize with the network, and
subsequently join the gossip-based dissemination process. Once integrated, the new node can
rely entirely on peer-to-peer interactions, thus preserving the decentralized nature of the
system while ensuring efficient and fault-tolerant network membership discovery.

Although automatic peer discovery using protocols such as ARP may seem appealing,
it is limited to a single broadcast domain and is unsuitable for multi-subnet or cloud-based
environments where network segmentation and virtual networking are common. Additionally,
ARP-based discovery introduces unnecessary broadcast traffic and lacks built-in mechanisms
for validating the liveness or role of discovered peers. In contrast, a seed node setup provides
a scalable, controlled, and cloud-friendly approach that avoids these drawbacks while
maintaining predictable and secure cluster formation.

Main formula for the number of seed nodes:

S(N) = max(3,[In(N)] + 1)

where:

3 — the minimum number of nodes for redundancy,

N — the total number of nodes in the cluster,

2 — an additional offset used when N > 1.

Per Availability Zone or physically separated cluster:

S(N)az = max(3,[(In(N) + 1)/Az])

All of the concepts outlined above are viable but not trivial to implement. Moreover, the
proposed approach should aim to reduce operational overhead while making the associated
benefits easier to realize. Gossip algorithm implementation can be complex and should ideally
be abstracted away from the compute node itself. Since gossiping is primarily an infrastructure-
level concern rather than application logic, it can be implemented using a sidecar pattern. In this
model, each compute node runs alongside a dedicated sidecar container responsible for gossip-
based communication and client-side load balancing. This separation streamlines the node’s
core responsibilities while enabling resilient and scalable service discovery.

The proposed solution also functions as a proxy, routing requests to the appropriate
dedicated node based on the current state of the internal gossip membership list. It can support
various load-balancing algorithms, allowing requests to be directed to the destination host

ISSN 1560-8956 151

MiKBiTOMYHIT HAYKOBO-TEXHIYHUI 30IpPHUK «ATaNTHBHI CHCTEMH aBTOMAaTHYHOTO yrpasiiHas» Ne 1 (48) 2026

using a strategy best suited for the specific use case. Considering eventual consistency of the
system, it is reasonable to expect occasional delays or discrepancies in the membership list.
For example, a specific Node Y of Service Z might be down, but this information has not yet
been updated in the list. In such cases, traffic can be rerouted to another available instance of
Node Y. By following this implementation approach, the target service remains decoupled
and unaware of infrastructure details, simplifying deployment and cleanly separating business
logic from cross-cutting concerns.

\ "u

o HTTP
HTTP Gossip
H % —_—>
' App E—] SideCar
Node_12345

B T -

...

Figure 6. Sidecar deployment approach

Conclusion and Future Work

This work examined the critical role of service discovery as a foundational component
in modern distributed, service-oriented systems. The discussion highlighted its importance for
ensuring reliable communication and scalability, while also identifying the potential risks
associated with logically centralized discovery models. By exposing these limitations, the
study emphasized the need for alternative approaches that enhance availability, resilience and
reduce operational fragility.

Building on these findings, future research will adopt a more practical perspective,
focusing on the design and implementation of a service discovery mechanism that preserves
the identified architectural benefits while minimizing operational overhead. This will include
developing a working prototype, refining implementation details, and ensuring seamless
integration into existing distributed environments. We will also address the network-flooding
behavior inherent in epidemic communication, adding advanced techniques to reduce
overhead.

Further work will also involve conducting performance evaluations and comparative
analyses between centralized and decentralized discovery models in real-world, cloud-based
deployments.

152 ISSN 1560-8956

MiKBiTOMYHIT HAYKOBO-TEXHIYHUI 30IpPHUK «ATaNTHBHI CHCTEMH aBTOMAaTHYHOTO yrpasiiHas» Ne 1 (48) 2026

REFERENCES

1. The Reactive Manifesto — Available from: https://www.reactivemanifesto.org/

2. Sam Newman. Building Microservices 2 Edition / Sam Newman // Building
Microservices 2 Edition. 30 April 2021. — P. 157-174.

3. What is Service Discovery — Available from: https://newsletter.scalablethread.
com/p/what-is-service-discovery

4. Pattern: Client-side service discovery — Available from: https://microservices.io/
patterns/client-side-discovery.html

5. Pattern: Server-side service discovery — Available from: https://microservices.io/
patterns/server-side-discovery.html

6. D. Ongaro, J. Ousterhout. In search of an understandable consensus algorithm
[Electronic resource] / D. Ongaro, J. Ousterhout // USENIX ATC'14: Proceedings of the 2014
USENIX conference on USENIX Annual Technical Conference, 19-20 June 2014. —
Philadelphia, PA, USA, 2014. — Available from: https://dl.acm.org/doi/10.5555/2643634.
2643666

7. Paxos Made Simple — Available from: https://lamport.azurewebsites.net/pubs/
paxos-simple.pdf

8. S. Gilbert, N. Lynch. Perspectives on the CAP Theorem [Electronic resource] /
S. Gilbert, N. Lynch // Computer. — 2012. — Vol. 45, iss. 2 — P. 30-36. — Available from:
https://doi.org/10.1109/MC.2011.389

9. Amazon EKS announces native support for autoscaling CoreDNS Pods —
Available from: https://aws.amazon.com/about-aws/whats-new/2024/05/amazon-eks-native-
support-autoscaling-coredns-pods/

10. Service discovery at Stripe — Available from: https://stripe.com/blog/service-
discovery-at-stripe

11. https://dl.acm.org/doi/abs/10.1145/3284028.3284034#core-history

12. "The art of service discovery at scale” by Nitesh Kant — Available from:
https://www.youtube.com/watch?v=27ynM2tbNXM&t=983s

13. Airbnb Service Discovery: Past, Present, Future (Challenges of Change) — Chase
Childers, Airbnb — Available from: https://www.youtube.com/watch?v=XQjOhJtwlwg&t=
2023s

14. S. Boyd, A. Ghosh, B. Prabhakar, D. Shah. Gossip algorithms: design, analysis
and applications [Electronic resource] / S. Boyd, A. Ghosh, B. Prabhakar, D. Shah //
Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications
Societies, 13-17 March 2005. — Miami, FL, USA, 2005. — Awvailable from:
https://doi.org/10.1109/INFCOM.2005.1498447

ISSN 1560-8956 153

https://www.reactivemanifesto.org/
https://microservices.io/%20patterns/client-side-discovery.html
https://microservices.io/%20patterns/client-side-discovery.html
https://microservices.io/%20patterns/server-side-discovery.html
https://microservices.io/%20patterns/server-side-discovery.html
https://dl.acm.org/doi/10.5555/2643634.%202643666
https://dl.acm.org/doi/10.5555/2643634.%202643666
https://lamport.azurewebsites.net/pubs/%20paxos-simple.pdf
https://lamport.azurewebsites.net/pubs/%20paxos-simple.pdf
https://doi.org/10.1109/MC.2011.389
https://aws.amazon.com/about-aws/whats-new/2024/05/amazon-eks-native-support-autoscaling-coredns-pods/
https://aws.amazon.com/about-aws/whats-new/2024/05/amazon-eks-native-support-autoscaling-coredns-pods/
https://stripe.com/blog/service-discovery-at-stripe
https://stripe.com/blog/service-discovery-at-stripe
https://dl.acm.org/doi/abs/10.1145/3284028.3284034#core-history
https://www.youtube.com/watch?v=27ynM2tbNXM&t=983s
https://www.youtube.com/watch?v=XQjOhJtw1wg&t=%202023s
https://www.youtube.com/watch?v=XQjOhJtw1wg&t=%202023s
https://doi.org/10.1109/INFCOM.2005.1498447

	Binder2
	Виправлено_ Деведжіогуллари
	Виправлено_ Луцак_Ткач
	Виправлено_OliinykPonochovnyy
	Виправлено_Oliinyk-Verkhovska
	Виправлено_Pasko_Drozdovich_MED
	виправлено_Антюк Ліхоузова Олійник укр
	Виправлено_Бачкала_Тимошин_2026_1
	Виправлено_БулботкаНадія
	Виправлено_Гавриленко, Мягкий
	Виправлено_Довгополюк_Олійник_Кувічка
	Виправлено_Жигорін_Олійник
	Виправлено_Кривоносюк_Стеценко
	Виправлено_Куземськии_Лісовиченко
	Виправлено_Лавров
	Виправлено_Матуляк_Ліхоузова_Олійник_укр
	Виправлено_Михайленко
	Виправлено_Павлов,_Головченко,_Кущ1
	Виправлено_Петров_Батрак_Цьопа
	Виправлено_Проценко_Стеценко
	Виправлено_Пустовойт_Батракт_Цьопа
	Виправлено_Рудяков
	Виправлено_Терентьєв
	Виправлено_Топчій
	Виправлено_Тюляков
	Виправлено_Швидченко
	Виправлено_Шевчук Ліхоузова Олійник укр

	УДК
	UDK
	Про авторів

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 2
 Page size: same as page 2

 D:20260204085649

 Blanks
 Always
 2
 1
 1
 720
 221
 0
 1
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 2

 CurrentAVDoc

 SameAsPage
 BeforeCur

 QITE_QuiteImposingPlus5
 Quite Imposing Plus 5.3d
 Quite Imposing Plus 5
 1

 0
 2

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 3 to page 327; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 70.87 points, vertical 41.10 points
 Colour: Default (black)
 Prefix text: ''
 Suffix text: ''

 D:20260204085948

 1
 1

 BR

 1
 1
 1
 1
 1
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1419
 194
 0
 1
 R0
 12.0000

 Odd
 3
 SubDoc
 327

 CurrentAVDoc

 [Doc:FileName]
 70.8661
 41.1024

 QITE_QuiteImposingPlus5
 Quite Imposing Plus 5.3d
 Quite Imposing Plus 5
 1

 2
 327
 326
 3f844fa1-a8ab-40cd-b8b6-53c8d8b87612
 163

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 3 to page 327; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 70.87 points, vertical 41.10 points
 Colour: Default (black)
 Prefix text: ''
 Suffix text: ''

 D:20260204085954

 1
 1

 BL

 1
 1
 1
 1
 1
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1419
 194

 0
 1
 R0
 12.0000

 Even
 3
 SubDoc
 327

 CurrentAVDoc

 [Doc:FileName]
 70.8661
 41.1024

 QITE_QuiteImposingPlus5
 Quite Imposing Plus 5.3d
 Quite Imposing Plus 5
 1

 3
 327
 325
 e368d55f-4793-47d2-9e18-7b4dca5ee21e
 162

 1

 HistoryList_V1
 qi2base

