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Abstract: Service discovery is a critical component in cloud-native and microservice-

based architecture, enabling dynamic service registration and resolution. While centralized 

service discovery systems such as Consul, Eureka, and Kubernetes DNS are widely adopted, 

they introduce scalability limitations, single points of failure, and operational complexity 

when deployed at scale. This paper investigates the inherent challenges of centralized service 

discovery models in large-scale, distributed environments and evaluates decentralized 

alternatives. The aim of the research is to show how decentralized service discovery model 

can improve system availability and make a large-scale distributed system more resilient and 

resistant to failure. 
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Introduction 

In today's technological landscape, enterprise-grade systems are increasingly designed 

to be cloud-native to meet the performance, scalability, and resilience demands of modern 

workloads. Well-architected cloud-native systems typically adhere to a defined set of 

principles such as those outlined in the Reactive Manifesto[1]. 

Within modern software engineering, several architectural paradigms have emerged to 

support such systems, including Service-Oriented Architecture (SOA), Microservices 

Architecture, and Event-Driven Architecture (EDA). Despite their differences, all these 

paradigms share a common requirement: independent components must be able to 

communicate effectively. Some architectures emphasize asynchronous, message-driven 

interactions, while others are built around synchronous request – response models. 

However, regardless of the interaction style, one foundational capability is essential: 

service discovery. 

“Service discovery the ability for components to dynamically locate and connect to 

one another in a fluid, often ephemeral environment.” – Sam Newman, “Building 

Microservices”, O’Reilly, 2015[2]. 

Several patterns exist for implementing service discovery, including: 
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Client-side service discovery 

 

Figure 1. Client-side service discovery [3] 

Client-side service discovery[4] is a decentralized service resolution pattern in which 

the service consumer is responsible for performing service instance resolution and endpoint 

selection. Upon invocation, the client queries a service registry – a distributed or centralized 

repository that maintains the metadata (e.g., network addresses, health status, capabilities) of 

active service instances. The client then applies a selection strategy (e.g., round-robin, least 

connections, latency-aware) to determine the target instance and establish a direct 

communication channel. 

In this pattern, the registry functions as a passive directory service, while the 

discovery logic and load-balancing responsibility reside entirely within the client. This 

reduces intermediate network hops but increases coupling between the client and the service 

registry API. 

Server-side (proxy-based) service discovery 

 

Figure 2. Server-side service discovery [3] 

Server-side service discovery[5] is a centralized service resolution pattern in which the 

service consumer sends a request to a fixed network endpoint (often a load balancer, gateway, 
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or API proxy) without performing direct service instance resolution. The intermediary 

component queries the service registry to determine the set of healthy service instances and 

performs request routing or load balancing on behalf of the client. 

In this pattern, the discovery logic and routing decisions are abstracted away from 

the client, reducing its complexity and eliminating the need for registry integration in client 

code. However, it introduces an additional network hop and potential single points of failure 

if the routing layer is not highly available. 

While the service discovery approaches are effective in many scenarios, they all share 

a fundamental architectural limitation: centralization. Whether through a DNS-based 

mechanism, a dedicated service registry (such as Eureka or Consul), these systems often 

introduce single points of failure and scalability bottlenecks. Such limitations become 

particularly problematic in large-scale or multi-region deployments, where high availability 

and fault tolerance are critical. 

Centralized Models: Strengths and Limitations 

At this part we will dig deeper into centralized models of service discovery and 

analyse them more thoughtfully. Before moving forward, it is important to clearly define the 

difference between centralized and decentralized models. A centralized model can, in fact, be 

physically distributed across multiple nodes or datacenters. This approach can make sense in 

terms of operational efficiency and load distribution. However, even when physically 

distributed, such systems remain logically centralized because they still require a single, 

consistent view of state, achieved through coordination mechanisms like consensus 

(RAFT[6], PAXOX[7]). Therefore, in this article, centralization should be understood as a 

logical property – referring to reliance on a single, authoritative control plane – rather than a 

purely physical deployment characteristic.  

Benefits of Centralized Service Discovery 

Despite their limitations, centralized service discovery systems provide several 

practical advantages that have contributed to their widespread adoption in production 

environments. Firstly, they offer a single source of truth for service metadata, allowing all 

clients and infrastructure components to resolve service locations consistently. Consistency in 

one of the most important characteristics that we have considered when design a distributed 

system. (CAP theorem[8]). In addition, centralization simplifies observability, auditing, and 

management by providing a unified control point for service registration, health status, and 

configuration. 

Additionally, centralized discovery models often support fine-grained access control, 

version-aware routing, and service tagging, all of which are critical in complex microservice 

environments where behavioral control and policy enforcement are required. These benefits 

make centralized service discovery an attractive and pragmatic choice for many enterprises 
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and cloud-native architectures, particularly where consistency, predictability, and operational 

control are priorities. 

Problem statement 

While centralized service discovery systems such as Consul, Kubernetes DNS 

(CoreDNS + etcd), and similar registry-based solutions have proven effective in moderate-

scale deployments, their architectural characteristics introduce significant challenges in large-

scale or globally distributed environments. Those systems create inherent limitations: 

1. Single Points of Failure and Bottlenecks[9] – Centralized components can become 

both a performance bottleneck and a critical dependency whose failure affects the availability 

of the entire service discovery layer. 

2. Scaling Constraints Under High Churn[10] – In high-velocity environments where 

services are frequently created, destroyed, or relocated, write throughput limits, leader 

election delays, and quorum dependencies introduce latency and instability. 

3. Operational Overhead – Maintaining low-latency, highly available centralized 

registries demands extensive capacity planning, observability, and tuning, increasing the 

operational burden on platform engineering teams. 

Even hybrid solutions like Consul Connect, which combine centralized service 

registration with decentralized failure detection, ultimately depend on a consistent central 

control plane that inherits the same scaling and availability constraints. In Kubernetes, DNS-

based discovery depends on CoreDNS and etcd, both of which exhibit performance 

degradation and resolution failures under extreme load [11]. 

These limitations suggest that as systems grow – particularly in multi-region, multi-

availability-zone topologies – the cost and complexity of sustaining centralized service 

discovery at scale becomes prohibitive, motivating the need to investigate decentralized or 

hybrid approaches that can better tolerate failures, reduce bottlenecks, and adapt to dynamic 

workloads. 

This problem can also be analyzed through the lens of reliability engineering theory.  

A distributed system can be represented as a set of N nodes, each characterized by its 

individual reliability Ri(t). When all nodes depend on a single centralized component, the 

overall system behaves as a series system. In such a configuration, the failure of any single 

component inevitably leads to the failure of the entire system. The reliability of a series 

system is expressed as: 

                                   

 

   

 

In contrast, when the nodes are organized in a parallel system, the system remains 

operational as long as at least one component continues to function. The reliability of a 

parallel configuration is defined by: 
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Or more generally: 

                         

 

   

 

To illustrate this with a practical example, assume that the availability of a single 

machine in a service discovery cluster is 0.99. For a mid-size cluster consisting of 10 

machines, the reliability under a series system is: 

             

This implies that even with highly reliable individual nodes, the cumulative reliability 

of a centralized (series) model decreases substantially as the cluster size grows. 

By comparison, in a parallel system of the same 10 machines, the reliability is: 

                            

This near-perfect reliability demonstrates the advantage of decentralized or replicated 

approaches, where the system continues to function even if a significant subset of nodes fails. 

 

Figure 3. Series System vs Parallel system comparison 

Decentralized Alternatives 

Decentralization, on the other hand, is a concept that has become increasingly popular 

in recent years. There are many reasons for this shift, but in our context, the most relevant are 

system availability and fault tolerance. In modern cloud computing, component failures are 

not exceptional – they are expected. We must embrace this reality and design systems with 

resilience as a core principle. A good reference point here is the chaos engineering culture, 

which promotes proactively testing systems against failure scenarios to ensure they can 

withstand and recover from them. 

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 1  (48) 2026

 ISSN 1560-8956 148



The most important and distinguishing characteristic between distributed and 

decentralized systems is how resources and responsibilities are allocated. In a decentralized 

system, resources must be necessarily spread across all participating processes or nodes, 

ensuring that no single entity holds exclusive control. In a distributed system, by contrast, 

resources only need to be sufficiently spread to meet operational requirements, which may 

still leave certain components as critical dependencies. 

This distinction makes decentralized systems inherently more resilient to single points 

of failure. In a truly decentralized architecture, the workload is necessarily shared among all 

members, eliminating reliance on any individual node. A clear example can be seen by 

comparing Bitcoin and Visa: 

 Visa, while highly distributed, still operates through centralized infrastructure.  

A system outage – though infrequent – can disrupt payment processing globally, posing a risk 

to transaction availability and security. 

 Bitcoin, as a decentralized ledger, has no single control point. The probability of 

the entire system failing is significantly lower. 

Of course, decentralized peer-to-peer systems like Bitcoin are not without their own 

challenges – for instance, vulnerabilities such as the 51% attack – but these issues fall 

outside the scope of this research. 

Of course, while gaining the following benefits, there is a price to pay — in our case, 

that price is consistency[12]. As we have already stated, service discovery is the backbone of 

any distributed, service-oriented system, and in this context, availability is far more important 

than strict consistency. More precisely, we trade a strong consistency model for eventual 

consistency to achieve higher availability and tolerance to network-partitioning[13]. 

 

Figure 4. CAP theorem visualization 
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An additional point supporting this approach is that in large-scale distributed systems, 

the environment changes so rapidly that maintaining service discovery as eventually 

consistent and ephemeral is often not a significant problem. 

 Considering the growing importance of cloud platforms in business operations, more 

companies are paying closer attention to decentralization. This article does not advocate for 

building only fully decentralized systems. In practice, decentralized architectures can be 

complex, difficult to design, and challenging to debug and maintain. 

Instead, our goal is to take proven concepts from decentralization – particularly 

those that enhance availability and fault tolerance – and apply them within well-established 

distributed system paradigms. By selectively integrating these principles, organizations can 

improve resilience without incurring the full complexity and operational overhead of a purely 

decentralized design. 

Possible solutions and research directions 

As an alternative, the following paper proposes a decentralized design with no central 

coordinator. Discovery is removed as a standalone service and pushed into domain-oriented 

services. Each service periodically exchanges state with randomly selected peers, allowing 

knowledge of the overall system to converge over time. This can be realized with a gossip-

based (epidemic) protocol [14]. 

 

Figure 5. Gossip communication between nodes 

The gossip protocol is a decentralized peer-to-peer communication mechanism 

designed to distribute information efficiently across large-scale distributed systems. Its core 

principle is that each node periodically exchanges messages with a randomly selected subset 

of other nodes. Through these repeated interactions, the system eventually achieves message 

dissemination with high probability. In simpler terms, the gossip protocol allows nodes to 

develop a global view of the system through many small, localized exchanges. 

All nodes communicate with each other using the UDP protocol. UDP is the logical 

choice in this context because it is connectionless, eliminating the need for session 

establishment and teardown as required by TCP. This reduces protocol overhead and avoids the 

additional latency introduced by handshakes. As a result, UDP enables lightweight, low-latency 

message exchange while minimizing the amount of traffic propagated through the network.  
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When discussing fully distributed systems, it is essential to consider the initial state of 

a node as it joins a cluster. A newly initialized node must be able to discover at least  

a minimal set of peers – typically two or more active nodes – to begin participating in the 

dissemination process. Hardcoding such addresses in configuration files is impractical, as 

cloud environments are inherently dynamic and subject to frequent changes over time. 

Instead, an effective solution can be drawn from existing peer-to-peer (P2P) systems, such as 

BitTorrent, using seed nodes. 

In a decentralized network, seed nodes function as stable entry points that facilitate the 

onboarding of new participants. They provide an initial "directory" of reachable peers, 

enabling new nodes to bootstrap their connectivity, synchronize with the network, and 

subsequently join the gossip-based dissemination process. Once integrated, the new node can 

rely entirely on peer-to-peer interactions, thus preserving the decentralized nature of the 

system while ensuring efficient and fault-tolerant network membership discovery. 

Although automatic peer discovery using protocols such as ARP may seem appealing, 

it is limited to a single broadcast domain and is unsuitable for multi-subnet or cloud-based 

environments where network segmentation and virtual networking are common. Additionally, 

ARP-based discovery introduces unnecessary broadcast traffic and lacks built-in mechanisms 

for validating the liveness or role of discovered peers. In contrast, a seed node setup provides 

a scalable, controlled, and cloud-friendly approach that avoids these drawbacks while 

maintaining predictable and secure cluster formation. 

Main formula for the number of seed nodes: 

                          

where: 

3 – the minimum number of nodes for redundancy, 

N – the total number of nodes in the cluster, 

2 – an additional offset used when N ≥ 1. 

Per Availability Zone or physically separated cluster: 

                             

All of the concepts outlined above are viable but not trivial to implement. Moreover, the 

proposed approach should aim to reduce operational overhead while making the associated 

benefits easier to realize. Gossip algorithm implementation can be complex and should ideally 

be abstracted away from the compute node itself. Since gossiping is primarily an infrastructure-

level concern rather than application logic, it can be implemented using a sidecar pattern. In this 

model, each compute node runs alongside a dedicated sidecar container responsible for gossip-

based communication and client-side load balancing. This separation streamlines the node’s 

core responsibilities while enabling resilient and scalable service discovery. 

The proposed solution also functions as a proxy, routing requests to the appropriate 

dedicated node based on the current state of the internal gossip membership list. It can support 

various load-balancing algorithms, allowing requests to be directed to the destination host 
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using a strategy best suited for the specific use case. Considering eventual consistency of the 

system, it is reasonable to expect occasional delays or discrepancies in the membership list. 

For example, a specific Node Y of Service Z might be down, but this information has not yet 

been updated in the list. In such cases, traffic can be rerouted to another available instance of 

Node Y. By following this implementation approach, the target service remains decoupled 

and unaware of infrastructure details, simplifying deployment and cleanly separating business 

logic from cross-cutting concerns. 

 

Figure 6. Sidecar deployment approach 

Conclusion and Future Work 

This work examined the critical role of service discovery as a foundational component 

in modern distributed, service-oriented systems. The discussion highlighted its importance for 

ensuring reliable communication and scalability, while also identifying the potential risks 

associated with logically centralized discovery models. By exposing these limitations, the 

study emphasized the need for alternative approaches that enhance availability, resilience and 

reduce operational fragility. 

Building on these findings, future research will adopt a more practical perspective, 

focusing on the design and implementation of a service discovery mechanism that preserves 

the identified architectural benefits while minimizing operational overhead. This will include 

developing a working prototype, refining implementation details, and ensuring seamless 

integration into existing distributed environments. We will also address the network-flooding 

behavior inherent in epidemic communication, adding advanced techniques to reduce 

overhead. 

Further work will also involve conducting performance evaluations and comparative 

analyses between centralized and decentralized discovery models in real-world, cloud-based 

deployments. 
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