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ІТЕРАЦІЙНИЙ АЛГОРИТМ АДАПТИВНОГО МЕТОДУ  

ПОБУДОВИ БАГАТОВИМІРНОЇ ЛІНІЙНОЇ РЕГРЕСІЇ  

З ВИКОРИСТАННЯМ КРИТЕРІЮ МІНІМІЗАЦІЇ СУМИ МОДУЛІВ 

Анотація: Дана публікація продовжує серію наукових досліджень авторів в об-

ласті побудови багатовимірних регресій з використанням критерію мінімуму суми мо-

дулів різниць, що використовуються в загальній процедурі методу найменших квадра-

тів. Реалізація цього критерію зводиться до розв’язання відповідної задачі лінійного 

програмування. Оптимізаційна модель лінійного програмування, на відміну від метода 

найменших квадратів, дозволяє вводити довільні, лінійні відносно невідомих коефіціє-

нтів регресійної моделі, обмеження, що використовують результати статистичних ви-

пробувань і реалізують додаткові властивості шуканої багатовимірної регресії. Ця ідея 

дозволила створити новий ітераційний алгоритм побудови багатовимірної лінійної ре-

гресії по обмеженому об’єму випробувань (≥ 90) в діапазоні значень дисперсії випадко-

вого фактору від 1 до 150. На кожній ітерації алгоритму розв’язується відповідна зада-

ча лінійного програмування, параметри якої змінюються з кожною наступною ітераці-

єю алгоритму. Логіка ітераційного алгоритму є наслідком запропонованої евристики, 

яка в роботі обґрунтовується як на якісному рівні, так і результатами імітаційного ста-

тистичного моделювання. Ефективність ітераційного алгоритму побудови багатовимір-

ної лінійної регресії по невеликому об’єму статистичних даних досліджувалась для но-

рмального розподілу випадкового фактору регресійної моделі при відомих і не відомих 

значеннях математичного сподівання і дисперсії. Було статистично визначено обме-

ження на мінімальну кількість випробувань (≥ 90), яке дозволяє запропонувати крите-

рій обґрунтованості знайдених оцінок невідомих коефіцієнтів багатовимірної лінійної 

регресії. Запропонований алгоритм модифіковано для випадку, коли багатовимірна лі-

нійна регресія задана надлишковим описом. Наведені теоретично обґрунтовані практи-

чні рекомендації по дослідженню фізично існуючої регресійної моделі, які дозволяють 

використовувати наведену в даній роботі математичну модель. 

Ключові слова: регресійний аналіз, багатовимірна лінійна регресія, задача ліній-

ного програмування, мінімізація суми модулів, ітераційний алгоритм, критерій   . 

1. Вступ 

Задача побудови багатовимірних лінійних регресій по невеликому об’єму експе-

риментальних даних, очевидно, і досі є актуальною як в теоретичному, так і в приклад-

ному аспектах [1–5]. 

Результати останніх досліджень в області побудови багатовимірних поліноміа-

льних регресій [6] показали, що в багатьох випадках в умовах обмеженого активного 

експерименту можливо знаходити оцінки коефіцієнтів при нелінійних членах БПР  

з наперед заданою точністю. Проблематика точності оцінок коефіцієнтів виникає для 

лінійних членів БПР. 
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В [6] вона розв’язувалась за допомогою запропонованої модифікації евристич-

ного методу групового урахування аргументів, який в практичному плані ефективний 

при не великих значеннях дисперсії випадкового фактора при обмеженому об’ємі екс-

периментальних даних. Тому задача знаходження статистично обґрунтованих оцінок 

коефіцієнтів багатовимірної лінійної регресії для обмеженої кількості експериментів  

(≥ 90) і діапазону значень дисперсії 1–150 нормально розподіленого випадкового фак-

тора є і наразі актуальною. Наведений ітераційний алгоритм є ефективною модифікаці-

єю відповідного алгоритму адаптивного методу побудови багатовимірних регресій [7]  

і використовує задачу лінійного програмування (ЗЛП) із змінними параметрами і кри-

терій мінімуму суми модулів різниць, що використовується в МНК. 

2. Постановка задачі багатовимірної лінійної регресії 

БЛР задана у вигляді 

               
 
     , (1) 

де     – всі детерміновані вхідні змінні, значення коефіцієнтів невідомі, випадкова ве-

личина   має нормальний розподіл з обмеженими параметрами     ,      . Не-

обхідно при невеликому об’ємі експериментальних даних                        об-

ґрунтовано оцінити невідомі коефіцієнти               . 

Примітка 1. Обмеження на кількість випробувань обґрунтовується в п.4 даного 

дослідження. Для зручності покладено                  . 

Примітка 2. Вважається, що     , якщо це не так, запропонований ітерацій-

ний алгоритм оцінює замість    величину      . Тому вважаємо, що завжди     . 

3. Базовий підалгоритм ітераційного алгоритму адаптивного методу  

для відомої дисперсії випадкового фактора       

Як показано в [8] критерій мінімуму суми модулів різниць, що використовується 

в МНК, зводиться до розв’язку ЗЛП. Це, в свою чергу, дозволяє в оптимізаційну модель 

знаходження оцінок                вводити додаткові лінійні обмеження, що є наслідком 

аналізу експериментальних даних                    . В п. 3 приведено агрегований опис 

базового підалгоритму ітераційного алгоритму адаптивного методу побудови багато-

вимірної лінійної регресії. 

3.1. Розв’язується ЗЛП 

       
 
   , (2) 

                ,     ,           , (3) 

де                 змінними ЗЛП (2), (3) є                          . 

Нехай                    – оптимальний розв’язок ЗЛП (2), (3). 
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3.2. Знаходяться оцінки реалізацій випадкової величини   

              ,           . (4) 

Критерієм    перевіряється проста гіпотеза про те, що    ,            належить но-

рмальному розподілу з параметрами 0,   . Якщо реалізація критерію    належить до-

пустимій області при       , кінець алгоритму, вектор    є обґрунтованим розв’язком 

задачі регресії. В протилежному випадку переходимо до наступного кроку базового 

підалгоритму. 

3.3. Знаходимо число 

               
 
   . (5) 

Для заданих чисел     , заданих натуральними числами     розв’язуємо пос-

лідовно наступні ЗЛП 

       
 
   , (6) 

                ,     ,           , (7) 

                           
 
               ,       ,                , (8) 

Змінними ЗЛП (6)–(8) є                              . 

Для кожного   для оптимального розв’язку    відповідної ЗЛП (6)–(8) реалізуєть-

ся пункт 3.2. Базовий підалгоритм завершує свою роботу в одному з двох випадків. 

Перший – для мінімального  , при якому реалізація критерію    належить допу-

стимій області, відповідний вектор    є обґрунтованим розв’язком задачі побудови бага-

товимірної поліноміальної регресії. 

Другий –                   реалізації критерія    належать критичній області. Базо-

вий підалгоритм реалізує       ЗЛП (7), (8). В результаті статистично обґрунтова-

ного розв’язку задачі регресії не було знайдено. 

Примітка 3. Статистичне дослідження ефективності знаходження обґрунтованої 

оцінки    вектора   наведено в п. 4. 

Примітка 4. Величини        задаються емпірично, їх можливі значення приве-

дені в розділі 4. 

Примітка 5. Евристика, яка була покладена в основу базового підалгоритьму 

полягає в наступному припущенні – при послідовному зменшенні допустимої області, 

якій належить невідоме число 

            
 
   , (9) 

де    – вектор невідомих коефіцієнтів багатовимірної лінійної регресії, можна отримати 

вектор оцінок невідомих коефіцієнтів   , для якого критерієм    приймається гіпотеза 

про нормальний розподіл з параметрами      та відомою дисперсією   , для вибірки 

              ,           . (10) 
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Евристика також припускає, що існує множина, елементами якої є фіксовані 

значення       , для кожного з яких суттєвим є як середній відсоток індивідуальних 

задач регресії, для кожної з яких базовий підалгоритм знаходить обґрунтовану оцінку 

вектора  , так і середній відсоток індивідуальних задач регресії з цієї множини, для 

кожної з яких МНК не знаходить обґрунтованого рішення. 

В наступному розділі аналіз результатів імітаційного модулювання підтвердив 

справедливість висунутої авторами евристики. 

4. Властивості базового підалгоритму, що є наслідком  

аналізу результатів імітаційного моделювання 

4.1. Вхідні параметри імітаційного моделювання 

Для оцінювання ефективності базового підалгоритму були використані на-

ступні параметри імітаційного моделювання: 

 Кількість випробувань була обрана для кожного значення    окремо (дана 

стратегія описана в п. 4.2) 

 Кількість оцінюваних коефіцієнтів є найбільшим цілим від ділення кожного 

фіксованого значення кількості випробувань послідовно на числа 5, 7, 10, 12, 15 та 20. 

Область значень оцінюваних коефіцієнтів – величини коефіцієнтів генеруються випад-

ковим чином з використанням рівномірного розподілу на інтервалі [1; 10] за модулем, 

із незалежним випадковим вибором знаку для кожного значення (     ). 

 Область значень детермінованих вхідних змінних – [1; 10). 

 Дисперсія випадкової величини   – від 5 до 100. 

 Кількість повторень кожного експерименту – 100. 

4.2. Знаходження кількості експериментів для кожного значення дисперсії 

Для значень дисперсії у діапазоні від 5 до 100 було визначено а) мінімальну кі-

лькість реалізацій випадкової величини  , при якій критерій    приймає гіпотезу про 

нормальний розподіл з відповідними числовими параметрами, в середньому не менше 

ніж у 91% випадків, при кількості повторень експерименту 200, б) мінімальну кількість 

реалізацій випадкової величини  , при якій критерій    приймає гіпотезу про нормаль-

ний розподіл з відповідними числовими параметрами, в середньому не менше ніж у 

97% випадків, при кількості повторень експерименту 200. Виявилось, що в першому 

випадку кількість реалізацій випадкової величини   дорівнює 90, в другому – 120. 

4.3. Формування базового значення параметра   та вибір діапазону його варіацій 

Параметром імітаційного моделювання   зветься величина, що задається виразом 

               
 
   , (11) 

де вектор оцінюваних коефіцієнтів    задається оптимальним розв’язком ЗЛП (2), (3). 

У процесі досліджень було виявлено, що значення параметра  , розраховане на 

коефіцієнтах вектора   регресійної моделі, не завжди по модулю є меншим, ніж зна-

чення модуля   (11). 
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З метою підвищення ефективності базового підалгоритму було прийнято рішення 

формувати масив можливих значень параметра   не лише за принципом поетапного зме-

ншення модуля базового значення, але й за рахунок його попереднього збільшення на 

певний відсоток. Для цього було здійснено двоетапну генерацію послідовності: спочатку 

створюється серія значень із поступовим збільшенням модуля базового   на заданий від-

соток (у даному випадку 2% на кожному кроці протягом 20 кроків), після чого формуєть-

ся низка значень зі зменшенням модуля у тому ж відсотковому співвідношенні. 

Примітка 6. В якості початкового базового параметра   можна вибрати   
 

 
   
 
   , де    це штучно згенеровані реалізації випадкової величини  .  

4.4. Оцінка ефективності параметрів моделі  

для досягнення точного та обґрунтованого розв’язку 

У рамках проведеного моделювання визначався відсоток випадків, коли для ко-

жного проміжного фіксованого значення параметра   було знайдено розв’язок відпові-

дної ЗЛП (6)–(8), що є обґрунтованою оцінкою    вектора  . 

Оцінка частки повторів, у яких знаходилася обґрунтована оцінка    вектора  , за-

свідчує стабільно високий рівень ефективності базового підалгоритму. Зокрема, при 

середніх та високих дисперсіях випадкової величини   (у межах від 5 до 100) та для 

відношень кількості випробувань до кількості невідомих коефіцієнтів від 5 до 20, цей 

показник становив у середньому 76.79%, тобто середній відсоток отримання обґрунто-

ваного розв’язку задачі регресії (отримання вектору   , для якого реалізація критерія    

потрапляє в допустиму область). 

Примітка 7. Порівняння різних обґрунтованих розв’язків індивідуальної задачі 

регресії, отриманих при різних значеннях параметра моделювання  , досліджується  

в розділі 4.5. 

Водночас було підтверджено, що зі зростанням дисперсії випадкової величини   

середній відсоток отримання обґрунтованих розв’язків має тенденцію до зниження. 

Наприклад, при фіксованому співвідношенні кількості випробувань до кількості коефі-

цієнтів, що дорівнює 5, середній відсоток отримання обґрунтованого розв’язку для ма-

лих дисперсій (5–15) становив 37.81%, тоді як для великих дисперсій (60–100) – 

23.64%. Подібна тенденція спостерігається і для співвідношення 7: при менших диспе-

рсіях відсоток становив 83.28%, тоді як при більших – 65.67%. 

Виявлено також важливу закономірність щодо впливу кількості оцінюваних кое-

фіцієнтів на результативність методу. Зокрема, при фіксованому співвідношенні між кі-

лькістю випробувань і кількістю коефіцієнтів (наприклад, співвідношення 10 з кількістю 

експериментів 120 та кількості оцінюваних коефіцієнтів 12), збільшення абсолютної  

кількості оцінюваних коефіцієнтів лінійної регресії супроводжується зниженням частки 

отримання обґрунтованого розв’язку. Для дисперсій 60–100 це зниження (кількість оці-

нюваних коефіцієнтів дорівнює 16, кількість випробувань 160) становить від 88.82% до 

58.17%. Така динаміка свідчить про доцільність, по можливості, зменшення кількості 
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коефіцієнтів, що оцінюються, наприклад, шляхом виключення вхідних змінних, що не 

впливають або слабо впливають на значення багатовимірної лінійної регресії. 

4.5. Стратегія вибору обґрунтованого розв’язку 

Під час експериментальних досліджень було встановлено, що у багатьох випад-

ках існувало декілька значень параметра моделювання  , для яких було знайдено об-

ґрунтований розв’язок. У зв’язку з цим виникла необхідність обґрунтувати стратегію 

вибору одного вектору оцінок невідомих коефіцієнтів з множини допустимих 

розв’язків. Для цього було здійснено оцінку значень мір порівняння, що характеризу-

ють якість кожного із знайдених рішень. В якості міри порівнянь (близькості) двох век-

торів вибрано наступну: 

         
 

   
 

  

   
 , (12) 

де          
  

   . 

У табл. 1 наведено узагальнені показники подібності обґрунтованих розв’язків 

для кожного повтору експериментів. Зокрема, розраховано середнє мінімальне значен-

ня міри порівняння з ідеальним вектором коефіцієнтів, середнє відхилення векторів 

інших обґрунтованих розв’язків від мінімальної міри порівняння. 

Середнє відхилення кожного із знайдених обґрунтованих розв’язків від мініма-

льного розв’язку за мірою порівняння з вектором   є вкрай малим – у більшості випад-

ків не перевищує 0.03. Це свідчить про те, що всі обґрунтовані рішення в межах однієї 

задачі є майже рівнозначними за точністю. 

У відсотковому відношенні для кількості випробувань в межах 90–120 середнє 

відхилення модулів значень компонентів вектору   , що є обґрунтованою оцінкою век-

тору  , від його відповідних компонентів для дисперсій випадкової величини   у ме-

жах від 5 до 100 становить 13.49%, що свідчить про високу точність оцінювання пара-

метрів моделі. Крім того, середнє значення міри порівняння вектору обґрунтованих 

оцінок    з вектором   становить 0.19. 

Крім оцінки відхилень модулів компонентів вектору обґрунтованих оцінок     

з вектором  , було також проаналізовано структурну подібність між векторами з точки 

зору збереження знаків компонентів. Зокрема, досліджувався відсоток компонентів, 

знак яких у векторі обґрунтованого розв’язку збігався зі знаком відповідного елемента 

в векторі  . За результатами експериментів, для всіх значень дисперсій випадкової ве-

личини   у межах 5–100 та відповідних комбінацій параметрів задачі регресії, відсоток 

збігу знаків компонентів векторів   ,   варіювався від 95.4% до 100%, а середнє значен-

ня становило 97.82%, що засвідчує високий рівень відповідності знаків між оціненими 

та ідеальними коефіцієнтами. 
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Таблиця 1. 

Результати статистичних досліджень 

Кількість 

випробу-

вань 

Кількість 

оцінюваних 

коефіцієн-

тів 

Відношення 

між випробу-

ваннями та ко-

ефіцієнтами 

Диспер-

сія 

Середнє 

мінімаль-

не значен-

ня міри 

порівнян-

ня з ідеа-

льним ве-

ктором 

Середнє 

відхилення 

мір порів-

нянь 

розв’язків 

від най-

кращого 

120 24 5 20 0.115281 0.025544 

90 18 5 40 0.242458 0.014331 

120 24 5 60 0.272887 0.028315 

90 18 5 80 0.210405 0.025075 

120 24 5 100 0.239977 0.002951 

120 17 7 20 0.124277 0.016185 

90 13 7 40 0.223547 0.018221 

120 17 7 60 0.249472 0.018103 

90 13 7 80 0.217466 0.031866 

120 17 7 100 0.30041 0.022197 

120 12 10 20 0.088593 0.014338 

90 9 10 40 0.214607 0.021857 

120 12 10 60 0.204662 0.019651 

90 9 10 80 0.297437 0.035061 

120 12 10 100 0.219004 0.027696 

120 10 12 20 0.114584 0.012738 

90 8 12 40 0.189889 0.027822 

120 10 12 60 0.203715 0.021635 

90 8 12 80 0.278997 0.048238 

120 10 12 100 0.284418 0.032425 

120 8 15 20 0.112872 0.015067 

90 6 15 40 0.170356 0.026917 

120 8 15 60 0.168672 0.01787 

90 6 15 80 0.290362 0.032212 

120 8 15 100 0.262156 0.03456 

120 6 20 20 0.096884 0.01472 

90 5 20 40 0.178471 0.029722 

120 6 20 60 0.182158 0.028542 

90 5 20 80 0.271672 0.043496 

120 6 20 100 0.215626 0.032925 

 

Таким чином, можна зробити висновок, що в якості остаточного розв’язку задачі 

регресії можна брати будь-яку обґрунтовану оцінку    вектора   і, як наслідок, завершу-

вати ітераційну процедуру базового підалгоритму після отримання першого обґрунто-

ваного розв’язку. 
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4.6. Обґрунтування необхідності ітераційної процедури базового підалгоритму 

Запропонована методика оцінювання коефіцієнтів із поетапним варіюванням 

параметра   демонструє свою доцільність та ефективність на основі наступних отрима-

них статистичних показників, які були зібрані як середні для усіх дисперсій випадкової 

величини   та відношення між кількістю випробувань та кількістю оцінюваних коефі-

цієнтів 5, 7, 10. По-перше, згідно з проведеними експериментами, у 47.72% випадків 

гіпотеза про відповідність моделі (за критерієм   ) підтверджувалася не на першій іте-

рації, а на наступних. Це свідчить про те, що стратегія багатокрокового пошуку рішень 

є виправданою: вона дозволяє знаходити коректні оцінки параметрів у ситуаціях, коли 

початкове обмеження не дає можливості отримати статистично значущий результат. 

Таким чином, процедура поступової зміни діапазону допустимих значень   підвищує 

ймовірність виявлення обґрунтованої оцінки    вектора  . 

По-друге, важливою характеристикою запропонованого базового підалгоритму  

є його можливість отримання обґрунтованої оцінки    вектору   у випадках, коли МНК 

його не реалізує. Так, для дисперсій випадкової величини   в межах 1–15 середній від-

соток дорівнює 3.57%, а для діапазону дисперсій 20–100 він дорівнює 6.18%. Це свід-

чить про підвищення середньої ефективності базового підалгоритму в умовах великих 

значень дисперсії. 

Аналіз результатів імітаційного моделювання показав, що існує множина пара-

метрів задачі регресії, при яких середній відсоток суттєво відрізняється від наведених 

вище відсотків (див. останній стовпець табл. 2). 

4.7. Ілюстраційний приклад 

Нижче наведено ілюстраційний приклад із зазначенням використаних парамет-

рів моделі та отриманих результатів: 

 Кількість випробувань становила 120,  

 Дисперсія випадкової величини   – 40,  

 Кількість оцінюваних коефіцієнтів – 17,  

 Ідеальні значення оцінюваних коефіцієнтів: 3.387, 8.654, -2.157, 3.429, -2.027, 

-2.897, 6.888, -1.859, -8.871, 4.601, 2.827, 9.982, -4.500, -2.483, -5.260, -9.074, 9.484,  

 Кількість ітерацій для отримання першого обґрунтованого розв’язку: 46,  

 Отриманий вектор оцінок: -1.333, 8.764, -2.245, 3.056, -2.149, -2.694, 7.346, -2.033, 

-8.519, 4.963, 2.753, 9.666, -4.081, -2.347, -5.442, -9.207, 9.889, 

 Міра порівнянь отриманого вектору обґрунтованого розв’язку    з вектором  : 

0.1982,  
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 Міра порівнянь вектору оцінок МНК з вектором  : 0.3966. Відповідна реалі-

зація критерія    для цього вектору оцінок належить критичній області, тобто отрима-

ний вектор оцінок МНК є необґрунтованим. 

Таблиця 2. 

Результати статистичних досліджень 

Кількість 

випробу-

вань 

Кількість 

оцінюваних 

коефіцієн-

тів 

Відношення між 

випробування-

ми та коефіцієн-

тами 

Диспер-

сія 

Частка 

повторів з 

≥1 успіш-

ною реалі-

зацією    

Частка по-

вторів з ус-

пішною реа-

лізацією   , 

у яких МНК 

не забезпе-

чив успіш-

ного прохо-

дження кри-

терію  

90 18 5 15 50 12.1752 

120 24 5 20 16 37.5576 

120 10 12 20 94 12.7659 

120 6 20 30 100 10.7216 

120 17 7 40 60 13.3333 

120 24 5 80 4 50.3891 

120 17 7 80 58 17.2413 

90 18 5 90 46 17.3913 

5. Ітераційний алгоритм адаптивного методу побудови  

багатовимірної лінійної регресії за результатами обмеженого  

об’єму випробувань і відомої дисперсії 

Розглядається для випадку обмеженої кількості випробувань, а саме      . 

Примітка 8. Достовірність числових характеристик ефективності ґрунтуються 

на результатах імітаційного моделювання, виходячи з того, що вибрані параметри, а 

саме            , область значень вхідних змінних       , використання рівномірного 

розподілу для визначення знаку кожного коефіцієнта               , приводить до того, 

що в середньому відношення 

 
    

       
, (13) 

достатньо велике, щоб вважати, що наведені середні характеристики ефективності ба-

зового підалгоритму (п. 4) є нижніми границями при розв’язанні практичних задач. Да-

лі наводяться агреговані кроки ітераційного базового підалгоритму. 

5.1. Розв’язання задачі методом найменших квадратів 

Задача регресії розв’язується МНК, а для отриманого вектору оцінок    реалізу-

ється п. 3.2. Якщо реалізація    належить допустимій області, отриманий вектор оцінок 

є обґрунтованим, в протилежному випадку ступінь достовірності розв’язку задачі оцін-

ки коефіцієнтів БЛР є невідомою. 
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5.2. Другий етап ітераційного алгоритму 

Реалізується, якщо на першому кроці (п. 5.1) отримані необґрунтовані оцінки кое-

фіцієнтів                і виконуються наступні обмеження на параметри задачі регресії 

      
 

   
               , (14) 

полягає в реалізації базового підалгоритму ітераційного алгоритму (п. 3). Якщо на дру-

гому кроці обґрунтовані оцінки                не знайдені, розв’язком задачі регресії  

є оцінки, отримані на першому кроці ітераційного алгоритму (п. 5.1). 

6. Узагальнення, допоміжні результати 

6.1. Ітераційний алгоритм при невідомій дисперсії    випадкової величини   

Реалізується якщо значення невідомої дисперсії випадкової величини   задово-

льняє умові 

                 . (15) 

Полягає в тому, що ітераційний алгоритм, викладений в п. 3 послідовно реалізу-

ється для   
      

      
   ,     

    
     

 ,    
       

 , де      
  достат-

ньо малі числа і задаються емпірично. 

Ітераційний алгоритм завершує роботу в одному з наступних двох випадків. 

Перший – знайдено таке мінімальне      , при якому для   
  ітераційним ал-

горитмом отримані обґрунтовані оцінки                . 

Другий – таке   не знайдене. Розв’язком задачі регресії беруться оцінки       

         , отримані загальною процедурою МНК. 

Примітка 9. Ітераційний алгоритм можна було б спростити, реалізувавши його 

один раз, перевіряючи критерієм    складну гіпотезу про нормальний розподіл. Але в 

цьому випадку прийнявши гіпотезу ми отримуємо в середньому гірші оцінки  

               , ніж у випадку, коли ітераційний алгоритм перевіряє і приймає просту гіпо-

тезу про нормальний розподіл по вибірці оцінок реалізацій випадкової величини  . 

6.2. Допоміжні результати 

6.2.1. Умови застосування ітераційного алгоритму 

Використання ітераційного алгоритму є можливим, якщо відомо, що випадкова 

величина   має нормальинй розподіл, відоме значення її дисперсії   , чи числа    , 

для яких виконується          з достатньо високою ймовірністю, причому бажано, 

щоб     було максимально можливо малим числом. Як показано в [7], ці умови реа-

лізується, якщо існує таке значення     – вектору детермінованих вхідних змінних   , яке 

в реальному експерименті може послідовно подаватися на вхід фізично існуючої регре-
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сійної моделі достатню кількість (  ) разів, що дозволяє критерію    обґрунтовано  

перевірити складну гіпотезу про нормальний розподіл. В цьому випадку отримаємо 

вибірку реалізацій випадкової величини         , по якій можливо: а) перевірити кри-

терієм    складну гіпотезу про нормальний розподіл випадкової величини         ,  

а значить і самої випадкової величини  , б) враховуючи, що          , де С – 

константа, побудувати з заданою ймовірністю   довірчий інтервал для      : 

 
   

 

  
     

   
 

  
 , (16) 

де 

   
  

 

 
                                   
   , (17) 

де 

                     
 

 
          
 
    , (18) 

де          – реалізації випадкової величини         в  -тому повторі реального екс-

перименту над регресійною моделлю             . Числа   
    

  задовольняють умовам 

        
   

 

 
        

   
 

 
, (19) 

де випадкова величина    має розподіл    з      ступенями свободи. 

Примітка 10.    вибирається з умови мінімізації різниці   
    

 . 

6.2.2. Ітераційний алгоритм для моделей із надлишковим описом 

Якщо виконуються умови п. 6.2.1, а саме існує можливість реалізації активного 

експерименту для достатньо великої кількості випробувань при деякому фіксованому 

значенні    , запропонований ітераційний алгоритм можна поширити на випадок, коли 

БЛР задана надлишковим описом, тобто припускається, що деякі вхідні змінні можуть 

не впливати, чи практично не впливати на вихідну змінну лінійної багатовимірної ре-

гресії. В цьому випадку пропонується по даним активного чи пасивного експерименту 

                       спочатку реалізувати алгоритм виключення вхідних змінних  

з нульовими чи практично нульовими по модулю коефіцієнтами викладений в [7], п. 3. 

В результаті отримуємо нову багатовимірну лінійну регресію 

                 
  
          . (20) 

Примітка 11.               , а також припускаємо, що в моделі (20) залиши-

вся коефіцієнт   . 

Коректність моделі (20) перевіряється наступним чином: на фізично існуючій 

регресійній моделі проводимо активний експеримент                     , де      

              
 
 

. Тобто на вхід фізично існуючої регресійної моделі послідовно    

разів подається вектор вхідних змінних                   
 
. 
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Примітка 12. Якщо це можливо, значення інших змінних                  на 

вхід фізично існуючої регресійної моделі не подаються. Якщо це неможливо, то в ви-

пробуваннях їх значення можуть бути довільні, достатньо великі по модулю. 

Критерієм    перевіряється складна гіпотеза про те, що вибірка               на-

лежить нормальній генеральній сукупності. Якщо гіпотеза приймається, коефіцієнти 

багатовимірної лінійної регресії (20) оцінюються запропонованим ітераційним алгори-

тмом. 

Примітка 13. Так як     , то у випадку 
 

    
   ефективність ітераційного 

алгоритму суттєво підвищується. 

Висновки 

1. Запропоновано задачу оцінки значень невідомих коефіцієнтів лінійної багато-

вимірної регресії знаходити по критерію мінімуму суми модулів різниць, що викорис-

товується в загальній процедурі методу найменших квадратів. 

2. Використання моделі лінійного програмування у випадку обмеженого об’єму 

експериментальних даних (≥ 90) на основі оригінальної евристики дозволило створити 

ітераційний алгоритм знаходження обґрунтованих оцінок коефіцієнтів багатовимірної 

лінійної регресії, на кожній ітерації якого розв’язується відповідна задача лінійного 

програмування. 

3. Аналіз результатів імітаційного моделювання дозволив виявити область зна-

чень параметрів задачі регресії для якої використання запропонованого ітераційного 

алгоритму статистично значимо приводить до знаходження обґрунтованих оцінок неві-

домих коефіцієнтів багатовимірної лінійної регресії. 
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