MiKBiTOMYHIT HAYKOBO-TEXHIYHUI 30IpPHUK «ATaNTHBHI CHCTEMH aBTOMAaTHYHOTO yrpasiiHas» Ne 1 (48) 2026

UDC 004.896
Y. Pustovoit, Ye. Batrak, N. Tsopa

AUTOMATED CONTROL SYSTEM FOR A ROBOTIC
MANIPULATOR BASED ON ESP32 AND FLUTTER

Abstract: This article presents an automated control system for a robotic manipulator
utilizing ESP32 and Flutter. The proposed solution provides real-time control, modularity, and
mobile accessibility. The developed system addresses the main issues observed in existing
educational and prototyping platforms, offering a modern, intuitive, and scalable design.

Keywords: ESP32, Flutter, WebSocket, robotics, manipulator, automation, mobile
application, 3D printing, system, architecture, modeling, automatic control, robotic systems.

Introduction

In the modern context of automation, education, and industrial prototyping, a key
challenge is the development of affordable and adaptable robotic solutions. Robotic
manipulators play a vital role in educational and industrial processes, enabling the simulation
of real-world control scenarios, automating routine tasks, and testing object recognition and
grasping algorithms. However, most existing systems are either too complex to implement or
financially inaccessible for student labs, technical clubs, or hobby projects.

Moreover, many available manipulators lack support for modern real-time
communication protocols, scalable architectures, or intuitive user interfaces, limiting their
suitability for rapid prototyping, educational use, or home applications. At the same time, the
development of microcontrollers with built-in communication modules and the emergence of
cross-platform interface development tools create a favorable environment for designing
simple, efficient, and affordable solutions.

Currently, several solutions partially or fully meet the needs of educational and
prototyping environments. Commercial products like Dobot Magician, uArm Swift Pro, and
ArmPi are high-precision platforms with advanced functionality, but their cost hinders
widespread adoption. Open-source projects based on Arduino and 3D printing, such as
BCN3D Moveo and MeArm, are common but often suffer from low accuracy, lack of real-
time feedback, and challenging integration with mobile devices. Some projects, like Robot
Arm Web Control, implement WebSocket-based control but require web servers or lack
mobile interface support.

Thus, the task of creating a comprehensive hardware-software platform with support
for modern technologies remains relevant. A pathway to such a platform lies in combining
contemporary hardware design approaches with software development that ensures intuitive
control and automation capabilities. This approach not only simplifies manipulator use but
also opens new opportunities for learning, experimentation, and practical application,

allowing users to customize the system to their needs.
© Y. Pustovoit, Ye. Batrak, N. Tsopa

ISSN 1560-8956 201

MiKBiTOMYHIT HAYKOBO-TEXHIYHUI 30IpPHUK «ATaNTHBHI CHCTEMH aBTOMAaTHYHOTO yrpasiiHas» Ne 1 (48) 2026
Objective and Tasks

The goal of the development presented in this work is to improve the accessibility of
automation for a broad range of users by creating an economical, flexible, and user-friendly
manipulator control system capable of performing basic grasping, transferring, and motion
automation tasks with high accuracy.

To achieve this goal, the following tasks must be accomplished:

1. Develop hardware using affordable and reliable components;

2. Implement a mobile application with an intuitive interface;

3. Ensure bidirectional real-time communication between the app and the
controller;

4. Implement support for both manual and automatic manipulator operation
modes;

5. Ensure system scalability (sensors, scenario storage, Internet-based control).

The presented results can contribute to the popularization of robotics by providing an
accessible tool for learning and experimentation. The system will allow users to perform
various tasks, from classroom demonstrations to prototyping automation in workshops.
Additionally, it can serve as a foundation for further development of similar systems,
including the integration of autonomous functions, remote control, and eco-friendly solutions.

Main Content of the Research

The system presented in this work consists of hardware and software components. The
hardware includes structural elements, a control board, and connectors. The design features
four degrees of freedom: a base platform for rotation around a vertical axis, an arm for
vertical lifting, an elbow for bending, and a rotary module for adjusting the gripper
orientation. The mechanical gripper is a two-finger claw mechanism controlled by a separate
servo motor and designed to hold lightweight objects.

The software component includes a mobile application, network communication, and
a microcontroller program. The developed system interface allows users to set servo motor
angles using sliders, control the gripper with dedicated buttons, and input command
sequences for automatic mode.

The system operates in two modes: manual, which enables real-time manipulator
control, and automatic, where the manipulator executes a pre-defined sequence of actions.
The system starts with power-up, activating the control board and servos. During
initialization, the board creates a Wi-Fi access point to which the mobile application connects.
After establishing a WebSocket connection, the system is ready to receive commands.

In manual mode, the system allows users to set rotation angles for each servo via
sliders in the app. For example, the command "M2:120" corresponds to rotating the second
servo to 120 degrees. This command is transmitted via sockets to the control board, which

202 ISSN 1560-8956

MiKBiTOMYHIT HAYKOBO-TEXHIYHUI 30IpPHUK «ATaNTHBHI CHCTEMH aBTOMAaTHYHOTO yrpasiiHas» Ne 1 (48) 2026

processes it and generates a signal for the corresponding servo. The manipulator moves
instantly, allowing for quick position adjustments.

In automatic mode, a sequence of commands can be defined, such as "M1:90, M2:120,
M5:30, M1:120, M5:0". This scenario is sent to the board, which executes the movements
sequentially, adhering to specified delays between commands. This mode simulates basic
autonomous behavior and can be used for demonstrations or repetitive tasks.

Hardware Component of the System

The central hardware component of the developed system is the ESP32
microcontroller, equipped with a dual-core 32-bit Tensilica LX6 processor, built-in Wi-Fi and
Bluetooth modules, and a wide range of peripheral interfaces (GPIO, SPI, 12C, UART, etc.).
This functionality enables both autonomous and networked control scenarios.

For generating PWM signals to control the servos, a dedicated PCA9685 driver is
used. It interfaces via 12C and supports up to 16 independent PWM channels, significantly
reducing the microcontroller's workload and ensuring smooth, precise control of multiple
servos simultaneously.

The utilized actuators include:

— MG995: Powerful servos capable of generating high torque, used for base
rotation, arm lifting, and elbow movement;

— SG90: Lightweight, compact servos for precise movements, such as gripper
control.

Servos are powered separately from the ESP32 using an external 6V power source. A
3A power supply connects to the driver through a voltage stabilization module.

Fig. 1 presents the functional diagram of the developed system, illustrating the
sequence of actions when using the system in automatic and manual modes. The system
includes user interface modules, automatic and manual control modules, and a robot motion
control module with servos. The process involves command creation, validation,
transmission, processing, and execution, considering system status and responses.

Manipulator Design

The mechanical structure is implemented as a manipulator with 4 degrees of freedom,
enabling basic grasping and movement operations:

1. Base rotation (MG995);

. Arm lifting (MG995);

3. Elbow bending (MG995);

4. Gripper rotation (SG90);

5. Gripper open/close mechanism (SG90).

The design was created in Fusion 360, considering available materials and servo
dimensions. Components were 3D-printed using FFF technology with PLA and ABS,
accounting for thermomechanical properties.

N

ISSN 1560-8956 203

MiKBiTOMYHIT HAYKOBO-TEXHIYHUI 30IpPHUK «ATaNTHBHI CHCTEMH aBTOMAaTHYHOTO yrpasiiHas» Ne 1 (48) 2026

Software centrol module
Automatic control module R -

System management Creating o Command validation check| | Command processing Gommand validation check

/ﬁ | T | T
=

: System status control Receiving commands
[: Sending commands interface " Execution of the command

Gefting a command

Generating a signal for the | | Sending a reaction to a
motor cantrol madule | | comman d

Manual control module

Servo 1 Servo 2 Servo 3

Creating command ~ |—»| Sending a command [—+—1

Figure 1. Functional Diagram of the System

The modular design allows for easy upgrades and quick replacement of damaged parts
without full disassembly.

Fig. 2 shows the fully assembled manipulator with all its components. The base
contains a mounting point for the servo that enables the entire manipulator's rotation. The
base consists of a foundation (1 in Fig. 2) and a rotating segment (2 in Fig. 2), responsible for
the manipulator's rotation. The first segment (3 in Fig. 2)—the arm—connects the base to the
next element. The arm includes a mounting point for the rotary shaft. The next element is the
elbow segment (4 in Fig. 2), or second lever, providing additional arm flexibility and driven
by a separate servo. At the elbow's end is a mounting point for the gripper (5 in Fig. 2) to the
manipulator's body. The final element is the manipulator's gripper (6 in Fig. 2).

3D Modeling

Each manipulator part was modeled individually as a 3D structure, allowing for future
replacement or optimization. The gripper design includes two independently moving fingers
for reliable object holding.

Key technical characteristics:

Minimized moving mass;

Symmetric geometry to reduce inertia;
Reinforced ribs in critical areas;

No unnecessary protrusions to minimize jamming risks.

204 ISSN 1560-8956

MiKBiTOMYHIT HAYKOBO-TEXHIYHUI 30IpPHUK «ATaNTHBHI CHCTEMH aBTOMAaTHYHOTO yrpasiiHas» Ne 1 (48) 2026

5 - gripper mount

6 - gripper 4 - elbow segment

3 - arm (first segment)

2 - rotating segment

1 - foundation

Figure 2. Assembled Robotic Manipulator Design

Geometric accuracy was Verified through manual animation in Fusion 360, including checks
for rotation tolerances, inter-part distances, and compatibility of mounting holes for servos.

Software Architecture

The mobile application was developed using Flutter, a framework that enables cross-
platform app development with a single Dart codebase.
This follows a "Clean Architecture™ pattern:
— Data: ServoCommand and Preset classes, repositories;
— Manager: ServoControllerManager class, which converts user actions into
commands;
— Presentation: User interface with a provider for state management, user sliders,
buttons, and modes.
Tabs include:
— Manual control: sliders for each servo;
— Automatic control: command list, delay settings, and scenario execution.
The app features basic data validation, error input protection, and connection loss
detection.
Command format:
"M1:100,M2:80" for automatic mode;
"M1:100" for manual mode.

ISSN 1560-8956 205

MiKBiTOMYHIT HAYKOBO-TEXHIYHUI 30IpPHUK «ATaNTHBHI CHCTEMH aBTOMAaTHYHOTO yrpasiiHas» Ne 1 (48) 2026

Each command is split into individual values, and ESP32 executes them sequentially.
In the future, these scenarios will be stored in a device database or memory. The interface is
adaptive to various screen sizes, includes error handling, and supports light/dark themes.

Manipulator control is implemented in two modes, switchable via app tabs: "Manual
Control™ (Fig. 3) and "Automatic Mode" (Fig. 4). This approach clearly separates interaction
logic, avoiding interface clutter and simplifying navigation. In manual mode (Fig. 3), each
degree of freedom is controlled by a separate slider, with values corresponding to the current
angle of the respective servo. Changing the slider position immediately generates a command
in the format "M{id}:{angle}", sent to ESP32 via WebSocket. This ensures real-time
manipulator control and immediate visual feedback for the user. The model is designed for
interactive work, position testing, and individual adjustments.

Manual Control Mode

Figure 3. "Manual Control™ Interface Tab

Automatic mode (Fig. 4) allows the creation and execution of command sequences.
This tab features an interface for step-by-step instruction addition, accumulating commands in
an internal list. The formed sequence is displayed as an editable list that can be cleared before
sending. After editing, the user presses "Start,” combining all saved commands into a comma-
separated string (e.g., "M1:90,M2:45,M3:120") and sending it to ESP32 as a single packet.
The microcontroller processes the instructions sequentially, enabling basic autonomous
behavior without manual intervention.

The use of both modes provides flexibility for experimental control and convenience
for repeating scenarios, which is particularly useful in educational and demonstration settings
where visibility and controllability are key.

206 ISSN 1560-8956

MiKBiTOMYHIT HAYKOBO-TEXHIYHUI 30IpPHUK «ATaNTHBHI CHCTEMH aBTOMAaTHYHOTO yrpasiiHas» Ne 1 (48) 2026

AUTOMATIC CONTROL MODE

console

app: added command: M5:90
app: added command: M3:130
app: added command: M1:20

Figure 4. "Automatic Control" Interface Tab

ESP32 Software Logic

The logic on ESP32 is structured as follows:

— Network initialization and access point creation;

— WebSocket server startup;

— Receiving text messages (commands);

— Parsing: splitting by commas, extracting Mx:angle values;

— Validation: checking valid ranges;

— Sending signals to PCA9685;

— Outputting PWM signals to the corresponding channel.

In case of connection loss, ESP32 enters a waiting mode.
The sequence of interactions between the mobile app and ESP32 microcontroller is depicted
in Fig. 6 as a sequence diagram, illustrating real-time command exchange.

Testing and Analysis of System Performance

Testing confirmed the developed robotic manipulator control system's functionality across
all key aspects, including hardware, software, and communication components. Testing covered
ESP32 initialization, MG995 and SG90 servo operation, WebSocket connection stability,
positioning accuracy in manual and automatic modes, and mobile app interface usability.

ESP32 reliably created a Wi-Fi access point in 3-5 seconds, though delays reached 10
seconds in some cases due to power fluctuations. MG995 servos performed reliably at 0° and
180° without load, but with objects over 300g, slight deviations occurred due to 3D-printed

ISSN 1560-8956 207

MiKBiTOMYHIT HAYKOBO-TEXHIYHUI 30IpPHUK «ATaNTHBHI CHCTEMH aBTOMAaTHYHOTO yrpasiiHas» Ne 1 (48) 2026

part play. SG90 servos effectively held small objects but were limited by low torque (2.5
kg-cm). The PCA9685 driver ensured smooth control of five servos with high resolution.

‘ Power ‘ ‘ ESP3z ‘ Flutter app ‘ Servo 1 ‘ ‘ Servo 2 ‘
——Ceonnacting to p-nwcr—hi

D.‘tl Launching an access point
D“tl Creating a WabSocket server

E*—Conncctmg to a WebSocket scrvclii

reating a cli

Manual control

4 M1:50" command

D.‘tl ‘Command parsing and validation

Rotata the first serve 90 degree:

p about ful of the command—3»

Automatic control

R e T 90,M2:40" command

D.‘tl ‘Command parsing and validation

Rotata the first serve 90 degree:

D about | ion of the command—»

Turn the first servo 40 degree:

:_ p about | i oflhcoummand_"i

Figure 6. Command Processing Diagram on ESP32

Average WebSocket command transmission delay was 70-100 ms at 1m and 80-120 ms at
5m, sufficient for local use. Invalid commands were handled correctly with error messages
("ESP:ERR"). In manual mode, positioning error was £2° for MG995 and +1.5° for SG90, with a
reaction time of 0.4-0.6s. In automatic mode, command sequences executed correctly, but with 6-
command scenarios, 25% showed delays up to 0.7s due to ESP32 buffer overload. The Flutter app
interface proved adaptive and user-friendly across various screen sizes.

Conclusions

This work presents the development of an accessible, modular, and scalable automated
control system for a robotic manipulator based on the ESP32 microcontroller and a Flutter
mobile application. The proposed solution addresses the main issues observed in existing
educational and prototyping platforms, offering a modern, intuitive, and expandable design.

Key achievements include:

208 ISSN 1560-8956

MiKBiTOMYHIT HAYKOBO-TEXHIYHUI 30IpPHUK «ATaNTHBHI CHCTEMH aBTOMAaTHYHOTO yrpasiiHas» Ne 1 (48) 2026

1. Hardware Integration: The combination of ESP32 with the PCA9685 driver
enabled efficient real-time control of multiple servos with minimized microcontroller load.

2. Mechanical Design: The modular 3D-printed structure allows easy maintenance,
upgrades, and part replacement, making the manipulator ideal for iterative prototyping and
educational settings.

3. Cross-Platform Interface: The Flutter-based mobile app provides seamless control
on Android and iOS devices, with separate modes for manual and automatic operation,
catering to diverse user needs.

4. Real-Time Communication: WebSocket implementation ensures low-latency,
bidirectional data exchange between the app and ESP32, supporting precise and fast control
scenarios.

The system architecture also allows for future enhancements, such as:

— Storage and execution of pre-defined action sequences;

— Integration of additional sensors and feedback loops;

— Remote access via Internet connectivity;

— Expansion of the command protocol for advanced functions.

5. Verified System Functionality: Testing results confirmed stable operation of all
components. ESP32 creates a Wi-Fi access point, MG995 and SG90 servos demonstrate
sufficient accuracy, the PCA9685 driver ensures smooth control, WebSocket operates with
low latency for real-time management, automatic mode correctly executes command
scenarios, and the app interface is adaptive and user-friendly.

As a result, the developed robot control system serves as a reliable foundation for
educational purposes, amateur experiments, and further research in automation, mobile
robotics, and user-oriented interface development.

REFERENCES
1. Dobot Magician — Educational Robotic Manipulator DOBOT: website URL:
https://www.dobot-robots.com/products/education/magician.html (application date:
18.06.2025).

2. UArm Swift Pro — Open-Source Robotic Manipulator UFACTORY: website URL:
https://www.ufactory.cc/products/uarm-swift-pro (application date: 18.06.2025).

3. ArmPi - Robotic Manipulator with Intelligent Hiwonder: website URL.:
https://www.hiwonder.com/products/armpi (application date: 18.06.2025).

4. BCN3D Moveo — Open-Source Robotic Manipulator [Electronic resource] //
GitHub. — Available from: https://github.com/BCN3D/BCN3D-Moveo (application date:
18.06.2025).

5. MeArm — DIY Robotic Arm Kit MeArm: website URL: https://mearm.com/
(application date: 18.06.2025).

ISSN 1560-8956 209

https://www.dobot-robots.com/products/education/magician.html
https://www.ufactory.cc/products/uarm-swift-pro
https://www.hiwonder.com/products/armpi
https://github.com/BCN3D/BCN3D-Moveo
https://mearm.com/

MiKBiTOMYHIT HAYKOBO-TEXHIYHUI 30IpPHUK «ATaNTHBHI CHCTEMH aBTOMAaTHYHOTO yrpasiiHas» Ne 1 (48) 2026

6. Wi-Fi Browser-Controlled Robotic Arm with Arduino [Electronic resource] //
Instructables. — Available from: https://www.instructables.com/Wi-Fi-Browser-Controlled-
Robotic-Arm-with-Arduino-/ (application date: 18.06.2025).

7. WebSocket — Real-Time Communication Protocol Wikipedia: website URL:
https://uk.wikipedia.org/wiki/WebSocket (application date: 18.06.2025).

8. Espressif Systems — ESP-IDF Programming Guide [Electronic resource]. —
Available from: https://docs.espressif.com/projects/esp-idf/en/latest/esp32 (application date:
18.06.2025).

9. MG995 - Servo Motor [Electronic resource]. — Available from:
https://www.alldatasheet.com/view.jsp?Searchword=Mg995 (application date: 18.06.2025).

10. SG90 -~ Servo Motor [Electronic resource]. — Available from:
https://www.scribd.com/document/436710755/sg90-datasheet-pdf (application date:
18.06.2025).

11. PCA9685 — 16-Channel 12-Bit PWM Servo Driver with 12C [Electronic
resource]. — Awvailable from: https://arduino.ua/prod1442-16-kanalnii-12-bit-pwmservo-

modyl-s-i2c-interfeisom-na-pca9685 (application date: 18.06.2025).
12. Flutter — Mobile Application Development Framework Flutter: website URL::
https://flutter.dev/ (application date: 18.06.2025).

210 ISSN 1560-8956

https://www.instructables.com/Wi-Fi-Browser-Controlled-Robotic-Arm-with-Arduino-/
https://www.instructables.com/Wi-Fi-Browser-Controlled-Robotic-Arm-with-Arduino-/
https://uk.wikipedia.org/wiki/WebSocket
https://docs.espressif.com/projects/esp-idf/en/latest/esp32
https://www.alldatasheet.com/view.jsp?Searchword=Mg995
https://www.scribd.com/document/436710755/sg90-datasheet-pdf
https://arduino.ua/prod1442-16-kanalnii-12-bit-pwmservo-modyl-s-i2c-interfeisom-na-pca9685
https://arduino.ua/prod1442-16-kanalnii-12-bit-pwmservo-modyl-s-i2c-interfeisom-na-pca9685
https://flutter.dev/

	Binder2
	Виправлено_ Деведжіогуллари
	Виправлено_ Луцак_Ткач
	Виправлено_OliinykPonochovnyy
	Виправлено_Oliinyk-Verkhovska
	Виправлено_Pasko_Drozdovich_MED
	виправлено_Антюк Ліхоузова Олійник укр
	Виправлено_Бачкала_Тимошин_2026_1
	Виправлено_БулботкаНадія
	Виправлено_Гавриленко, Мягкий
	Виправлено_Довгополюк_Олійник_Кувічка
	Виправлено_Жигорін_Олійник
	Виправлено_Кривоносюк_Стеценко
	Виправлено_Куземськии_Лісовиченко
	Виправлено_Лавров
	Виправлено_Матуляк_Ліхоузова_Олійник_укр
	Виправлено_Михайленко
	Виправлено_Павлов,_Головченко,_Кущ1
	Виправлено_Петров_Батрак_Цьопа
	Виправлено_Проценко_Стеценко
	Виправлено_Пустовойт_Батракт_Цьопа
	Виправлено_Рудяков
	Виправлено_Терентьєв
	Виправлено_Топчій
	Виправлено_Тюляков
	Виправлено_Швидченко
	Виправлено_Шевчук Ліхоузова Олійник укр

	УДК
	UDK
	Про авторів

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 2
 Page size: same as page 2

 D:20260204085649

 Blanks
 Always
 2
 1
 1
 720
 221
 0
 1
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 2

 CurrentAVDoc

 SameAsPage
 BeforeCur

 QITE_QuiteImposingPlus5
 Quite Imposing Plus 5.3d
 Quite Imposing Plus 5
 1

 0
 2

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 3 to page 327; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 70.87 points, vertical 41.10 points
 Colour: Default (black)
 Prefix text: ''
 Suffix text: ''

 D:20260204085948

 1
 1

 BR

 1
 1
 1
 1
 1
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1419
 194
 0
 1
 R0
 12.0000

 Odd
 3
 SubDoc
 327

 CurrentAVDoc

 [Doc:FileName]
 70.8661
 41.1024

 QITE_QuiteImposingPlus5
 Quite Imposing Plus 5.3d
 Quite Imposing Plus 5
 1

 2
 327
 326
 3f844fa1-a8ab-40cd-b8b6-53c8d8b87612
 163

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 3 to page 327; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 70.87 points, vertical 41.10 points
 Colour: Default (black)
 Prefix text: ''
 Suffix text: ''

 D:20260204085954

 1
 1

 BL

 1
 1
 1
 1
 1
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1419
 194

 0
 1
 R0
 12.0000

 Even
 3
 SubDoc
 327

 CurrentAVDoc

 [Doc:FileName]
 70.8661
 41.1024

 QITE_QuiteImposingPlus5
 Quite Imposing Plus 5.3d
 Quite Imposing Plus 5
 1

 3
 327
 325
 e368d55f-4793-47d2-9e18-7b4dca5ee21e
 162

 1

 HistoryList_V1
 qi2base

