УДК 621.38(62-52)

Л.С. Ямпольский, Ю.Н. Ланкин, О.И. Лисовиченко

РЕАЛИЗАЦИЯ МОДЕЛИРОВАНИЯ ДИСКРЕТНО-СОБЫТИЙНЫХ СИСТЕМ ИЕРАРХИЧЕСКИМИ РАСПРЕДЕЛЁННЫМИ ВО ВРЕМЕНИ СЕТЯМИ ПЕТРИ

Введение

Рассмотренные в [1] иерархические распределённые во времени сети Петри (И-РВСП) обладают двумя достоинствами: техникой нисходящей декомпозиции, сохраняющей общий вид моделируемых фрагментов дискретно-событийных систем (ДСС), и восходящей составляющей синтеза, обеспечивающей эффективный маршрут связи с более низких до верхних уровней. При этом сложные ДСС могут декомпозироваться нисходящей И-РВСП-технологией, тогда как восходящая технология позволяет синтезировать точные И-РВСП-модели для функционирования более низких уровней.

Данная статья является продолжением работы [1], знакомящей с базовыми основами И-РВСП и особенностями их структуры с отображением иерархической модели интеллектуального управления ДСС, а также методикой классификации ошибок и формирования соответствующих идентифицированных состояний СП. Рассмотрены свойства позиций и переходов в иерархических структурах и общие свойства сгенерированной И-РВСП-модели ошибки на координатном уровне с сопровождающим примером, демонстрирующим удобство и простоту излагаемой технологии моделирования и структурной классификации и обобщающим результаты исследований по реализации предложенного подхода.

Иерархическая структура позиций и переходов

Группирование позиций и переходов в И-РВСП-модели выполнено в зависимости от состояний системы, которые эти группы представляют, а именно, нормальное состояние работы, а также состояние ошибок. На рис. 1 приведено подробное описание такой классификации и определены основные свойства группирования.

Пусть P_k и T_k представляют все позиции и переходы в И-РВСП-модели всех состояний системы. Итак, И-РВСП-контроллер координационного уровня имеет следующий вид: И-РВСП = (P_k, T_k, I, O) , где I и O – функции входа-выхода (в обычных СП); P_k , T_k – соответственно, множество позиций и переходов сети.

С точки зрения описания системы, это множество позиций P_k может быть определено как объединение четырех подмножеств позиций P_{e_i} , где i = (0, 1, 2, 3). Эти четыре подмножества зависят от различных факторов моделирования системы, проиллюстрированных на рис. 1,б : P_{e_0}

© Л.С. Ямпольский, Ю.Н. Ланкин, О.И. Лисовиченко, 2005

, P_{e_1} , P_{e_2} , P_{e_3} - позиции, отображающие нормальное функционирование системы (ЛУО-ошибки исключены), при наличии ЛУО-ошибок, при наличии ВУО-ошибок, при наличии неустранимых ошибок, соответственно.

С учётом вышеизложенного, переходы в И-РВСП-модели могут быть определены как принадлежащие к одному из подмножеств переходов T_{e_i} , где i = (0, 1, 2, 3). И снова эти четыре подмножества переходов зависят от факторов, проиллюстрированных на рис. 1,6: T_{e_0} , T_{e_1} , T_{e_3} – переходы, отображающие, соответственно, нормальное функционирование системы (ЛУО-ошибки исключены), при наличии ЛУО-ошибок или приводящих к этому состоянию из нормального в процессе функционирования системы, при наличии ВУО-ошибок или приводящих к этому состоянию из нормального в процессе функционирования системы, при наличии ВУО-ошибок или приводящих к этому состоянию из нормального в процессе функционирования системы (а также из одного ошибочного состояния), при неустранимых ошибках (т.е. таких, которые могут привести к тупиковому состоянию системы) или приводящих к этому состоянию из нормального в процессе функционирования системы (а также из одного ошибочного к тупиковому состоянию системы) или приводящих к этому состоянию из нормального в процессе функционирования (д. также из одного ошибочного к тупиковому состоянию системы) или приводящих к этому состоянию из нормального в процессе функционирования системы (а также из одного ошибочного к тупиковому состоянию системы) или приводящих к этому состоянию из нормального в процессе функционирования системы (а также из одного в процессе функционирования системы) или приводящих к этому состоянию из нормального в процессе функционирования системы (а также из двух ошибочных состояний).

В свою очередь, групповые переходы $T_{e_1}, T_{e_2}, T_{e_3}$ состоят из трех разделённых подсетей переходов:

- переходы, у которых входные и выходные позиции находятся в одной и той же группе (в общем случае идентифицирующиеся как T_{e_i});
- переходы, у которых хотя бы одна из входных позиций находится в нижестоящей группе, и одна из выходных позиций – в вышестоящей группе (это группы 1, 2 или 3, см. рис. 1(б);
- переходы, у которых хотя бы одна из входных позиций находится в вышестоящей группе (1, 2 или 3), и одна из выходных позиций – в нижестоящей группе (группа 0, см. рис. 1(б).

Два последних типа переходов (которые являются подмножеством перехода T_{e_k} , где $k = \max\{i, j\}$) отображают изменения состояний функционирующей системы. Переходы форм $T_{e_{21}}, T_{e_{32}}, T_{e_{31}}$ не рассматриваются, так как предполагается, что процедуры восстановления ошибок вернут систему в нормальное рабочее состояние. Переходы форм $T_{e_{03}}, T_{e_{13}}$ возможны, но при этом запрещены для разрешения иерархического распространения информационной ошибки (это становится очевидным при рассмотрении следующего примера:

пусть некоторые переходы формы $T_{e_{ij}}$ являются внешнеуправляемыми. Тогда, выполнение этих переходов возможно при условии, когда происходит случайное событие r. На рис. 1,а показаны группирования позиций и переходов в координационном уровне И-РВСП-модели).

Переходы $T_{e_{01}}$, $T_{e_{02}}$, $T_{e_{12}}$ и т.д. представляют группу (так называемых блокирующих), которые могут привести к ЛУО- или к ВУО-ошибкам, либо к различным ошибкам при восстановительных процедурах (это может соответствовать различным точкам ввода в некоторой подсетевой

Рис. 1 – а. – Классификация позиций и переходов

Рис. 1б. – Классификация позиций и переходов

позиции более высокого уровня или совершенно другой подсети). Они могут быть либо внешне, либо внутренне управляемыми переходами– в зависимости от детализации системы. У такой классификации нет отдельных группировок позиций или переходов, которые представляли бы приостановленное состояние функционирования. По определению, приостановленное состояние функционирования отдельного координатора (включая связанные с ним позиции и переходы) такое, при котором его объединенные ресурсы используются другим координатором во время восстановления ВУО-ошибок. Таким образом, набор позиций и переходов, которые отражают приостановленное состояние, может охватывать группы 0, 1, и 2 классификации.

Структурные свойства И-РВСП-модели

Пусть: P_k и T_k – совокупность позиций и переходов; p_k и t_k – отдельные позиции и переходы: позиции с индексами d, a, s, ss и su – означают, соответственно, решающую РП-позицию, активную АП-позицию, пассивную ПП-позицию, истока-стока ПИС-позицию и подсетевую ПСП-позицию; переходы с индексами idt и edt –внутренне ВтУП и внешне ВшУП управляемые переходы, соответственно [1]; $\rho(P)$ - количество элементов множества P; • (t_1) - множество входных позиций для перехода $t_1, t_1 \in T_k; p_{s_j}^p$ – означает p -ю позицию j -й группы. Иерархические структурные свойства группировок позиции и перехода (по нисходящей на рис. 1) следующие:

Свойство 1. Общая И-РВСП-модель системы состоит из всех разновидностей типов позиций и переходов:

$$P_{k} = \bigcup_{i=\{d,a,s,ss,su\}}^{P_{i}} = \bigcup_{i=\{0,1,2,3\}} P_{e_{i}};$$
$$T_{k} = \bigcap_{i=\{idt,edt\}} T_{i} = \bigcap_{i=\{0,1,2,3\}} T_{e_{i}},$$

где

$$\rho(P_k) = \rho(P_d) + \rho(P_a) + \rho(P_s) + \rho(P_{ss}) + \rho(P_{su}) = \rho(P_{e_0}) + \rho(P_{e_1}) + \rho(P_{e_2}) + \rho(P_{e_3});$$

$$\rho(T_k) = \rho(T_{idt}) + \rho(T_{edt}) = \rho(T_{e_0}) + \rho(T_{e_1}) + \rho(T_{e_2}) + \rho(T_{e_3}).$$

Свойство 2. Действия четко определены на самом нижнем уровне детализации системы, что означает, что все позиции подсети приведены в их исходное состояние – РП- и АП-позиций:

$$\begin{aligned} \forall j \in \{1, 2\}, P_{e_j} &= \bigcup_{k = \{d, a, su, s\}} P_{e_{kj}}; \\ \forall j \in \{0\}, P_{e_j} &= \bigcup_{k = \{d, a, s\}} P_{e_{kj}}. \end{aligned}$$

Свойство 3. В данной группе ПСП-позиция состоит из позиций и переходов, определенных в тех же группах или группах нижестоящего уровня:

$$\forall i \in \{0, 1, 2\}, j \in \{1, 2\}, i \le j;$$

$$p_{su_j}^p = \bigcap_i P_{e_{ki}}^/ \cup T_{e_i}, k \in \{d, a, su, s\},$$

где

$$P_{e_{ki}}^{/} = P_{e_{ki}}^{-} \{ p_{su_j}^p \}.$$

Свойство 4. Позиции уникальных группирований не могут одновременно находиться в двух различных группах:

$$\forall i, j \in \{0, 1, 2, 3\}, P_{e_i} \cap P_{e_j} = \left\{ \begin{smallmatrix} 0, i \neq j \\ P_{e_i}, i = j \end{smallmatrix} \right\}$$

Свойство 5. Входящие в два группирования переходы

 $\forall i, j \in \{0, 1, 2, 3\}, T_{e_i} \cap T_{e_j} = \left\{T_{e_i}, i = j^{T_{e_{ij}}, i \neq j}\right\}$ – такие, у которых входные и выходные позиции между этими двумя группированиями подчиняются следующим в п.п. 5, а и 5, б подсвойствам:

<u>Подсвойство 5,а.</u> У таких переходов существует хотя бы одна входная позиция p_r в *i* -ой группе и хотя бы одна выходная позиция p_s в *j* - ой группе (типа $T_{e_{ij}}$, i < j, как показано на рис. 1) в иерархически восходящей передаче информации в И-РВСП-модели системы, причём:

 p_r — это АП- или РП-позиция i-ой группы; p_s — это ПП-, АП-, РП-позиции или позиция ПИС-позиция j-ой группы. Позиции, принадлежащие группе $m, ((m < i) \lor (m > j))$, не могут являться позициями входа и выхода для переходов типа $T_{e_{ij}}$. Все другие позиции, которые принадлежат m'-ой группе, $i \leq m' \leq j$, могут быть либо входными, либо выходными для таких переходов.

Таким образом:

$$\begin{split} &\forall t_l \in T_{e_{ij}}, i, j, m \in \{0, 1, 2, 3\}, i < j, k \in \{d, a, su, s, ss\}, ((m < i) \lor (m > j)); \\ &\exists p_r, p_r \in \bullet(t_l) : (p_r) \in (P_{ea_i} \lor P_{ed_i}); \\ &\exists p_s, p_s \in (t_l) \bullet : (p_s) \in \left\{ \begin{array}{c} (P_{ts_j} \lor P_{ea_j} \lor P_{ed_j}), \ \textit{ecnuj} = \{0, 1, 2\} \\ P_{ess_j}, \ \textit{ecnuj} = 3 \end{array} \right\}; \\ &\neg \exists p_t, p_t \in (t_l) \bullet \lor p_t \in \bullet(t_l) : (p_t) \in P_{ek_m}. \end{split}$$

<u>Подсвойство</u> 5,6. У таких переходов существует хотя бы одна входная позиция p_r в *i* -ой группе и хотя бы одна выходная позиция p_s в *j* -ой группе (типа $T_{e_{ij}}, i > j, j = 0$, как показано на рис. 1) в иерархически восходящей передаче информации в И-РВСП-модели системы, причём: p_r – это ПП-, АП-, РП-позиции или ПИС-позиция *i* -ой группы; p_s – это ПП- либо АП-позиция в *j* -ой группе. Позиции, принадлежащие *m* -ой группе, не могут являться входными или выходными позициями для переходов типа $T_{e_{ij}}$. Все остальные позиции, которые принадлежат к группе m', i > m' > j, могут быть либо входными, либо выходными для таких переходов.

Таким образом:

$$\begin{aligned} \forall t_l \in T_{e_{ij}}, i, m \in \{1, 2, 3\}, j = 0, k \in \{d, a, su, s, ss\}, m > i; \\ \exists p_r, p_r \in \bullet(t_l) : (p_r) \in \left\{ \begin{array}{c} (P_{ts_i} \lor P_{ea_i} \lor P_{ed_i}), \ ecnui = \{1, 2\} \\ P_{ess_i}, \ ecnui = 3 \end{array} \right\}; \\ \exists p_s, p_s \in (t_l) \bullet : (p_s) \in (P_{es_j} \lor P_{ea_j}); \\ \neg \exists p_t, p_t \in (t_l) \bullet \lor p_t \in (t_l) \bullet : (p_t) \in P_{ek_m}. \end{aligned}$$

Подсвойства 5,а и 5,б доказывают, что И-РВСП-модель является полной и совместимой структурой. Все вышеприведенные свойства отражают структуру И-РВСП-контроллера с точки зрения функций диспетчера/анализатора. В том случае, когда диспетчер/анализатор функционирует как контролирующе-сертифицирующее устройство всех операций системы, все действия, выполняемые на НУК-подуровне, "не просматриваются" диспетчером. Вместе с тем, при запуске анализатора ошибок диспетчер выборочно проверяет подсети (и их соответствующие нижестоящие сетевые уровни) до тех пор, пока не будет достигнута соответствующая маркировка ошибок: после идентифицирования маркировки начинается анализ ошибок. Этот важный аспект функционирования И-РВСП-модели способствует упрощению процесса идентификации ошибок и снижению количества маркировок достижимости подсети.

Общая структура И-РВСП модели

На рис. 2 показана обобщенная структура И-РВСП-модели любой иерархической системы с учетом сбоев на координационном уровне. На рис. 3 и рис. 3 представлены базисные композиции И-РВСП моделей для любой системы. Эти структуры могут быть использованы для идентификации операций, которые одновремённо выполняются различными координаторами при их взаимодействии. На этих двух рисунках обобщены фрагменты, отображённые разобщено в рассмотренных ранее иллюстрациях.

У каждого координатора есть связанные с ним операции, и у всех таких операций есть связанные с ними позиции и переходы, которые можно разделить на три группы, как показано на рис. 2 (состояния: нормальное, при ошибке 1, при ошибке 2, соответственно). Когда координатор начинает операцию, он работает в нормальном состоянии. Когда он обнаруживает ЛУО-ошибку (ЛУО_{иниц}), им инициируются операции, связанные с состоянием при ошибке 1; если же ЛУО-ошибка обработана (идентифицирована) (ЛУО_{обр}), происходит возврат координатора к нормальной работе. Если ЛУО-ошибка не идентифицирована еще на стадии ошибки 1, или если имеет место ВУО-ошибка, тогда координатором выполняются действия, связанные с восстановлением ошибки 2. Подобные операции нуждаются в поддержке/использовании ресурсов, связанных с другими координаторами, и данный координатор приостанавливается до высвобождения и доступности необходимых ресурсов.

Передача ресурсов между двумя координаторами (от координатора *j* к координатору *i*) на рис. 2 показана штрихованными линиями "X".

Рис. 2 – Общая структура И-РВСП модели.

"Ячейка" координатора Таблица 1

Координац. ячейка	Коорд. 1	Коорд. 2	•••	Коорд.n
Коорд. 1	-	X	•••	-
Коорд. 2	X	-	•••	X
• • •	X	-	-	-
Коорд.n	-	X	•••	-

"Ячейка" координатора

В табл. 1 в виде C_{ij} -матрицы, являющейся, по-существу, координирующей ячейкой, отображается взаимодействие между различными координаторами и направленным потоком ресурсов при наличии ВУО-ошибки. Введение переменной X в матрице C_{ij} обозначает наличие системного ресурса (работающего под управлением координатора C_i), использовавшего во время ВУО-ошибки управляющее состояние координатора C_j . Наличие ввода для C_{ij} не означает существование соответствующего ввода для C_{ji} . "Пустой" ввод в матрицу для обоих C_{ij} в виде $(X_p + \ldots + X_q)$ обозначает, что ресурсы $X_i \in C_j$ (отдельных или всех переменных) используются в ВУО-восстановительном процессе в C_i .

Примеры реализации

<u>Производственный пример</u>. Для того, чтобы продемонстрировать методологию И-РВСП-проектирования, рассмотрим производственную систему, представленную на рис. З [З] и состоящую из трех рабочих станций CT_1 , CT_2 , CT_3 и робота Р. Заготовка должна быть последовательно обработана на рабочих станциях $CT_1 - CT_3$, причём, станции CT_1 и CT_3 могут обрабатывать только одну заготовку и используют робот Р при обработке и выгрузке (следовательно, ресурс робота поделен между CT_1 и CT_3), тогда как станция CT_2 может обрабатывать две заготовки одновременно и может загружаться и выгружаться самостоятельно. Если робот уже начал работу на рабочих станциях, его работа не может быть прервана до окончания операции по выгрузке. Фиксированные заготовки ожидают своего времени выполнения в специальном входной буфер $EY\Phi_{six}$. Готовые детали автоматически перемещаются в выходной буфер $EY\Phi_{six}$ после окончания разгрузки станции CT_3 .

С позиций И-РВСП-модели можно выделить четыре основных этапа функционирования: операции на входном накопителе, связанные с фиксацией партии поступивших на БУФ_{ех} заготовок, подлежащих обработке на СТ₁; операции на СТ₁, сопровождаемые загрузкой роботом Р станции СТ₁ заготовками из БУФ_{ех}, их обработкой этой станцией и дальнейшей выгрузкой роботом Р обработанных полуфабрикатов и транспортировкой последних на станцию СТ₂; операции на СТ₂ по автозагрузке полуфабрикатов, их обработке этой станцией и автовыгрузке обработанного изделия; операции на СТ₃, когда робот Р загружает обработанные на СТ₂ изделия в станцию СТ₃, на которой осуществляется их окончательная обработка, и далее робот Р разгружает СТ₃, транспортирует готовое изделие на выходной буфер БУФ_{еых} и затем возвращает освободившуюся тару на входной буфер БУФ_{ех}.

При моделировании описанной производственной ситуации на верхнем уровне И-РВСП-модели можно констатировать следующее (см. рис. 3):

 станции СТ₁, СТ₂ и СТ₃ работают в определённой последовательности с фиксированными партиями заготовок. Если отдель-

Рис. 3 – Производственный пример

ные элементы партии заготовок любой специализированной группы по каким-то причинам не будут обработаны на какой-либо стадии (то есть не пройдут через какую-либо из рабочих станций), этот факт зафиксируется соответствующей позицией p_x подсети в И-РВСП-модели, виртуально отражающей состояние реальнофункционирующей системы. Рабочие станции CT_1 и CT_3 используют робот Р для своего обслуживания, в связи с чем последний должен быть свободным перед активизацией позиции p_x одной из этих рабочих станций;

робот Р переносит партии из зоны питателя БУФ_{ех} на станцию СТ₁, либо с выхода станции СП₂ на вход станции СП₃, либо возвращает освободившуюся тару после станции СТ₃ на буфер БУФ_{ех}. Этот процесс может быть абстрагирован более высоким уровнем представления в модели - операцией функционирования робота.

Фрагментарно И-РВСП-модель представлена рисунками 4, 5 и 6 [2]. Группирование позиций и переходов (аналогично рассмотренному выше и отображённому на рис. 1) указано в таблице 2. Таблицы 3 и 4 дают общее представление об И-РВСП-модели с координирующей ячейкой. Следует отметить, что таблицы 2-4 отражают результат функционировании системы с позиций диспетчера/анализатора. Заметим, что И-РВСП-моделью системы отражаются лишь некоторые из возможных ошибочных ситуаций. Нет и чёткого представления о восстановительном процессе после некоторых ошибок, ибо этим примером отображения на диспетчере/анализаторе лишь демонстрируются возможности декомпозиции И-РВСП-подхода, причём, сеть разбита на такие минимально возможные состояния, в которых удаётся наблюдать определённое группирование позиций и переходов.

В таблице 5 приведено описание состояния позиций и переходов в декомпозициях И-РВСП. Восходящим способом проверяются такие важные свойства системы, как *ограниченность*, *живость* и *реверсивность*. Анализ достижимости подсетей связан с состоянием её маркировки, *т.е. с проблемой достижимости* и заключается в следующем: вначале проверяются свойства подсети p_{44} (или p_{23} , рис. 6); затем проверяются свойства подсетей p_3 (или p_{15} , см. декомпозицию сети на рис. 5); далее следует про-

Рис. 4 – Первая декомпозиция И-РВСП-модели

Рис. 5 – Вторая декомпозиция И-РВСП-модели

Рис. 6 – Декомпозиция-З И-РВСП-модели

Таблица 2.

Наблюдаемое группирование позиций и переходов И-РВСП-модели системы

Классификация	Позиции/переходы
p_{e3} , t_{e3}	p_1 , p_{16} , t_I
t_{e23}	t_{11}
t_{e30}	t_1
p_{e2} , t_{e2}	p_3 , p_{3a} , p_4 , p_5 , p_6 , p_7 , p_{7a} , p_8 , p_9 , p_{10} , p_{10a} , p_{11}
	, p_{12} , p_{13} , p_{13a} , p_{14} , p_{15} , p_{15a} , p_{35} , t_3 , t_4 , t_5 , t_6 , t_7 , t_8 , t_{10}
t_{e02} , t_{e12}	t_2 , t_{28}
t_{e20}	t ₃₂ *
p_{e1} , t_{e1}	p_{23} , p_{23a} , p_{25} , p_{28} , p_{31} , p_{33} , p_{34} , p_{44} , p_{44a} , t_{26} ,
	t_{29}
t_{e01}	t_{13} , t_{15} , t_{17} , t_{21} , t_{24}
t_{e10}	t_{14} , t_{16} , t_{18} , t_{19} , t_{22} , t_{23} , t_{25} , t_{27} , t_{30} , t_{31}
p_{e0} , t_{e0}	p_2 , p_{22} , p_{24} , p_{26} , p_{27} , p_{29} , p_{30} , p_{32} , p_{36} , p_{40} , p_{41}
	, p_{42} , p_{43} , p_{45} , t_{20} , t_{33}

*- эти переходы возможны при восстановлении нормальных операций благодаря внешнему событию, контролируемому диспетчером/анализатором. верка свойств подсетей p_7 (или p_{10} , или p_{13}); наконец, следует проверка свойств всей И-РВСП-модели, отображённой на рис. 4. Процессное время, связанное с позицией p_{26} для различных рабочих станций, определяется динамической маркировкой системы. Это значит, что процессное время, связанное с операциями в позициях p_{24} , p_{26} и p_{27} , будет зависеть от маркировки позиций p_{7a} , p_{10a} и p_{13a} . Если позиция p_{10a} маркирована, то процессное время может зависеть от маркировки позиции p_9 , что также повлияет на загруженность рабочей станции (обрабатываются одно или два задания).

Анализ функционирования. Функционируя как контрольное устройство, диспетчер \ анализатор сможет также "видеть" все операции системы, которые проиллюстрированы в табл. 1. Таким образом, произойдет переключение на режим контроллера операций, сразу после обнаружения ошибки в операции. В этом режиме будет выбрана и проанализирована необходимая подсеть для идентификации размещения ошибки и связанных состояний подсети. Во время этих операций, диспетчер может активировать ВшУП или инициировать системные операции еще раз в необходимых точках входа/выхода, как было отражено в И-РВСП модели системы.

Таблица 3.

	Источники	ЛУО _{иниц}	ЛУО $_{o \delta p}$	ВУОиниц	ВУОобр
Робот	p_5				
БУФ _{вх}	p_{40}	t_{13}	t_{14}		
CT_1	p_6	$t_{15}, t_{17}, t_{21},$	t_{16} , t_{18} , t_{19} , t_{22} , t_{23} , t_{25}	t_{28}	t_{32}
		t_{24}	, t_{27} , t_{30} , t_{31}		
CT_2	p_9	t_{17} , t_{21} , t_{24}	t_{18} , t_{19} , t_{22} , t_{23} , t_{25}		
CT_3	p_{12}	t_{15} , t_{17} , t_{21}	t_{16} , t_{18} , t_{19} , t_{22} , t_{23} , t_{25}	t_{28}	t_{32}
		, t_{24}	, t_{27} , t_{30} , t_{31}		
БУФ _{вых}	-				

Структурная координация в И-РВСП модели

Таблица 4.

Связи в ячейках координатора

	Робот	БУФ _{вх}	CT_1	CT_2	CT_3	БУФ _{вых}
Робот			X		X	
БУФ _{ех}			X			
CT_1				X		
CT_2					X	
CT_3						X
БУФ _{вых}						

Таблица 5.

Интерпретация состояний позиций и переходов

Позиции	Переходы
p_1 Входная ПИС-позиция	t_1 ВшУП1
<i>p</i> ² Доступность входной партии	t_2 В подсеть p_3
р ₃ Подсеть количества носителей	t_3 Из подсети p_3
<i>p</i> ₄ Фиксированная партия доступна	t_4 Начало операции CT_1
на БУ Φ_{ex}	t_5 Конец операции CT_1
p_5 Робот свободен	t_6 Начало операции CT_2
<i>p</i> ₆ CT ₁ (рабочая станция 1) свободна	t_7 Конец операции CT_2
р7 Подсеть для операций на рабочей	t ₈ Начало операции СТ ₃
станции 1	t ₉ Конец операции СТ ₃
<i>p</i> ⁸ Незагруженная деталь из рабочей	$t_{10} \ { m B}$ подсеть p_{15}
станции 1	t_{11} Из подсети p_{15}
<i>p</i> ⁹ CT ₂ (рабочая станция 2) свободна	t_{12} Приспособления готовы для за-
<i>p</i> ₁₀ Подсеть для операций на рабочей	грузки
станции 2	t_{13} Подсеть передвинуть вовнутрь
<i>p</i> ¹¹ Незагруженная деталь из раб.	t_{14} Подсеть передвинуть наружу
станции 2	t_{15} Инициирование операций CT_1 ,
$p_{12} \operatorname{CT}_3$ (рабочая станция 3) свободна	CT_2 , или CT_3
<i>p</i> ₁₃ Подсеть для операций на рабочей	t_{16} Деталь, передв. к рабочей стан-
станции 3	ции
<i>p</i> ₁₄ Незагруженная деталь из рабо-	<i>t</i> ₁₇ Загрузка закончена
чей станции 3	t_{18} Загрузка успешна
<i>p</i> ₁₅ Подсеть возвращает все присп-	t_{19} Неуспешная загрузка
особления на БУФ _{ех}	t_{20} Деталь обработана
<i>p</i> ₁₆ Выполняющаяся деталь на	t ₂₁ Выгрузка закончена
БУФ _{вых}	t ₂₂ Выгрузка неуспешна
<i>p</i> ₄₀ Количество приспособлений, до-	t_{23} Выгрузка успешна
ступное на БУФ _{ех}	t_{24} Деталь перенесена на не-большое
<i>p</i> ₄₁ В подсеть р ₃	расстояние
p_{42} Из подсети р $_3$	t_{25} Достигнут пункт назначения
	t_{26} Полезное отклонение

Продолжение таблицы 5.

Интерпретация состояний позиций и переходов

Позиции	Переходы
$p_{43} \ { m B}$ подсеть p_{15}	t_{27} Пункт назначения не достигнут
р ₄₄ Подсеть переносит приспособле-	t_{28} Деталь выгружена, вне подсети
ния к БУ Φ_{ex}	t_{29} Деталь в зоне достижимости
$m{p}_{45}$ Из подсети p_{15}	t_{30} Деталь не опущена
p_{22} Начало операций на CT_1 , CT_2 ,	t_{31} Деталь поднята
CT_3	t_{32} Деталь может быть бракована
p_{23} Перенесение деталей на CT_1 , CT_2	t_{33} Деталь доставлена на место на-
, CT_3	значения
p_{24} Загрузка деталей на CT_1 , CT_2 , CT_3	tiВозврат к началу цикла
<i>p</i> ₂₅ Операция загрузки успешна?	
<i>p</i> ₂₆ Загрузка успешна, деталь обра-	
батывается	
p_{27} Выгрузить детали с CT_1 , CT_2 , CT_3	
<i>p</i> ₂₈ Успешна ли процедура выгруз-	
n_{00} Петаль выгружена вне полсети	
<i>p</i> ₂₀ Переместить в полсеть на не-	
большое расстояние	
рзі Полезное отклонение/пункт на-	
значения достигнуты	
р ₃₂ Инициализировать переключе-	
ние детали	
р ₃₃ Деталь опущена	
<i>p</i> ₃₄ Инициализировать поднятие де-	
тали	
р35 Деталь вне достижения, сло-	
жная ошибка	
<i>p</i> ₃₆ Вне движения подсети	

Выводы

Рассмотрены свойства И-РВСП-базовой многофункциональной модели иерархической ДСС. Синтезированы и проанализированы структурные объединения позиций и переходов для диагностирования ошибок диспетчером/анализатором, позволяющим одновременно интерпретировать особенности функционирования реальной системы как на верхних (абстрагированных), так и на нижних (детализированных) её уровнях.

Дополнительным важным достоинствами основанного на И-РВСПподходе системного моделирования является возможность адаптации к системам с параллельными процессами и различными ресурсами, выполняющими независимые операции для достижения общей цели. Примером такой адаптации служит присоединение приоритетного правила для принадлежащих к конфликтному множеству переходов (например, обеспечение возможности более высокого приоритета для переходов с активизированными дугами).

Приведенный пример реализации описанного подхода наглядно интерпретирует особенности И-РВСП-моделирования сложных процессов в ДСС при выявлении и прогнозировании возможных сбоев.

Литература

- Моделирование процессов в дискретно-событийных системах иерархическими распределёнными во времени сетями Петри / Лисовиченко О.И., Остапченко К.Б., Пуховский Е.С., Ямпольский Л.С. // Адаптивні системи автоматичного управління. Регіональний міжвузівський збірник наукових праць.- Вип. 7(27).- Дніпропетровськ, 2004.- С. 26-38.
- Ramaswamy S., Valavanis K. P. Modeling, Analysis and Simulation of Failures in a Materials Handling System with Extended Petri Nets // IEEE Transactions on Systems, Man and Cybernetics.-Vol. 24.- 9.-1994.
- 3. Zhou M. C., DiCesare F. Petri Net Synthesis for Discrete event Control of Manufacturing Systems // Boston: Kluwer Academic Publishers.-1993.