MiskBigOMY U HAYKOBO-TeXHIYHUH 30ipHUK «AJaNTHBHI CHCTEMH aBTOMATHYHOIO yIpaBJiHHs», 2015, Ne 2(27)

UDC 004.8

B.E Trofimov, A.V. Arsiriy, E.A. Arsiriy

MODEL TO REPRESENT LARGE GRAPHS OF
USER PROFILES IN HBASE ON DSP SIDE

Annotation: Success of Real-Time Bidding and advertising campaigns
depends on building precise target audience profiles on Demand Side Platoform
side. Modern Demand Side Platoform’s user databases contain billions of profi-
les with multiple connections between each other. The challenge is to remain
database efficient on usual read/write operations and allow to query informati-
on about connections in a graph manner. This article addresses a data model to
represent a large profile databases with subset of graph-based operations and

corresponding mapping to modern NoSQL databases like HBASE.
Keywords: databases, hbase, graph, real-time bidding, demand side platform,

profile bridging.

Introduction. Today’s strategic vision of Advertising (Ad) business
and related technologies tightly depends on real-time bidding (RTB)
and programmatic Ad technology. The growth of RTB market showed
36% [1] last year. According to PRNewswire, RTB market will hit $42
Billion by 2018 [2].

The Ad market is highly-competitive, so outstanding Ad players are
trying to convince advertisers like Nike, Coca-Cola and others that
game rules are fair, metrics and budget spending is clear.

One of the biggest problems, Ad players have faced with, is profi-
le fragmentation [3]. Nowadays almost everyone has multiple Internet
entry points like tablets, phones, home PC and workstations (Fig. 1).
Every such device has own unique traceable identifier (ID). In some
cases like web serving that ID might be ordinary web cookie, for mobile
devices it is device ID. From Demand-Side Platform (DSP) it turns out
that database has multiple profiles assigned to dif ferent IDs however
connected to the same user in fact. The problem here is that it prevents
from building efficient AD campaigns. For instance, two user profi-
les are given with own ID (assuming that the user accessed WEB via
home and work PCs). The first profile provides particular user interest
(segment), that he is a male. The second profile provides informati-
on that the user is a higher educational person. Splitting information
about gender and education between two dif ferent profiles prevents
from involving this user in complex campaigns like delivering Ad to all
males with higher education, just because from DSP perspective there
profiles are two dif ferent persons.

The process of identifying profiles, connected to the same user, is
called as a profile bridging. From mathematical perspective profile
database is a huge graph < V|, E > where vertexes V are user profi-
les and edges E are bridging rules. Once bridging rules are well-
defined then the task might be reduced easily to well-known problem
of connected components identification.

© B.E Trofimov, A.V. Arsiriy, E.A. Arsiriy, 2015
ISSN 1560-8956 3

MiskBigOMY U HAYKOBO-TeXHIYHUH 30ipHUK «AJaNTHBHI CHCTEMH aBTOMATHYHOIO yIpaBJiHHs», 2015, Ne 2(27)

__[BN

-~ ||
m/ O O
Figure 1 — Profile fragmentation problem

The challenge is to keep profile database up to date and consistent in
terms of high concurrency. Another challenge is an ef ficient database
schema to store profiles and connections between them an a way to keep
major DSP operations fast and cheap.

Graph databases. There are many specific databases to address
graph problems and store data in a graph manner, like neo4;j [4], ti-
tan [5], s2graph [6]. The major problem with them is that they compel
specific proprietary data schema and storage engine. In many cases
this is unacceptable. For instance, a lot of companies already have
databases with well-defined data schema, so migration to new schema
breaks existent API and requires data transformation, that is quite
painful.

Another example is a scale. Just a few graph databases (e.g. Titan)
are able to process graphs with billions of edges and vertexes with
small response time (low latency).

For many cases Titan over HBASE is a nice choice. It is distributed
graph database focused on high scalability and distributed processi-
ng. In addition, it provides modern graph API based on Blueprints
interface [7] and user-friendly query language Gremlin [8].

The down side of Titan is the follows:

e Titan compels own HBASE schema and the obfuscated data
representation [9]

e It requires exclusive access to HBASE rows and columns.

e Source code of Titan provides obfuscated and complicated
support of multiple HBASE versions based on shims [10] which
prevents from seamless integration with distributed computation
frameworks like Scalding [11].

For companies that already have large HBASE profile databases wi-
th well-developed infrastructure based on Scalding/Spark integration,
these issues might be critical.

Requirements and constraints. This article addresses the issues
of schema simplicity at scale. From DSP’s perspective HBASE data
schema and underlying data model should conform to the following
requirements (¥):

4 ISSN 1560-8956

MiskBigOMY U HAYKOBO-TeXHIYHUH 30ipHUK «AJaNTHBHI CHCTEMH aBTOMATHYHOIO yIpaBJiHHs», 2015, Ne 2(27)

e an efficient access to user profile (corresponding segment list) by
any of connected identifiers;

e an efficient check whether two profiles are connected, comparable
by time to HBASE row lookup;

e an ef ficient retrieval of all linked profiles for a specific profile;

e simple and extensible data schema,

e Respecting super-node issue [12].

e In addition to requirements, the schema should address the
following constraints:

e minimize amount of read operations to HBASE;

e no need to implement complete operations over graph database;

e simple integration with third-party frameworks like Scalding or
Spark.

Structural data model. Given: finite set of user
profiles D = {P}, each profile is just a triple P =<
ID,SEGMENTS,ASSOCIATIONS > where ID is unique identifier
of profile, SEGMENTS C R — finite list of linked segments (every
segment is just unique integer) and ASSOCIATIONS = {ID} — finite
set of IDs, e.g. associations with other profiles.

From implementation perspective the model should reflect some
features from NoSQL world:

PROFILESUEDGES (1)

where
PROFILES = {<
ID,< TYPE,MASTERID >,{SEGMENT}, {ID} >}
——

system family segments family associations family

ID — is unique row identifier,
TYPE = profile’ — type of row, indicates that the row belongs to PROFI-
LES subset,

MASTERID — reference to the master profile’s ID, NULL value
indicates that the profile is a master,

SEGMENT as a part of Segment family — integer, identifying
particular user’s interest,

Association family — defines a list of connected profiles; each
connected profile should provide complete list of connected IDs;

EDGES ={<ID, TYPE , WEIGHT } >,
——— | ———
systemfamily properties family

ID - is an edge identifier, its value is alphabetical concatenation of
IDs from two connected profiles, one of these two profiles needs to be a
master,

ISSN 1560-8956 5

MiskBigOMY U HAYKOBO-TeXHIYHUH 30ipHUK «AJaNTHBHI CHCTEMH aBTOMATHYHOIO yIpaBJiHHs», 2015, Ne 2(27)

TYPE="edge’ — type of row, indicates that the row belongs to EDGES
subset,

W EIGHT — probability of connection between profiles to cover case
with fuzzy connections.

The master profile should be the oldest profile between connected
profiles in the model. The reason is to reduce number of edges by using
star-like graph topology instead of full graph. The down side of this
constraint is that the model does not allow ef ficient one-read queries to
check if two non-master profiles are connected.

Operations over data model. The defined above data model
reflects just static data structure while real life assumes interaction wi-
th the model and its continuous changing. Let’s define a set of operati-
ons over the data model. The operations from the first set are directly
derived from requirements (*):

e Add profile (P). Given: user profile P. The operation just adds one
more row to existent data model M in a way like

MU{< PID,/profile’, NULL,
PSEGMENTS, P.ASSOCIATIONS >}

e Any relationship and mastership should be defined during of f-line
operation “Find Connected Components”.

e Check Connection (ID1,1D2). Given: two profile IDs, on of them
must be a master. Assuming that /D1 < I D2 by alphabetical order,
then the model (1) should provide lookup of the united key ID1 +
1D2.

e Retrieve list of segments (ID). Given: profile’s ID. The model (1)
should just retrieve partial row (Segments family) by ID.

e Retrieve complete list of unique profiles. The model (1) should
retrieve all rows which column PARENTID is NULL and
TYPE="profile’.

In addition to real-time operations there are background ones (*¥),
that are focused on model evolution and eventual consistency:

e Find Connected components. Implementing algorithm of identi-
fying connected components. The only one requirement is that
it must distinguish master profiles and specify corresponding
MASTERID column for dependent profiles.

e Profile Compaction. Operation synchronizes list of segments
between all connected profiles in a two steps:

(a) assemble complete list of segments based on all connected
profiles;

(b) clone the list between all connected profiles.

6 ISSN 1560-8956

MiskBigOMY U HAYKOBO-TeXHIYHUH 30ipHUK «AJaNTHBHI CHCTEMH aBTOMATHYHOIO yIpaBJiHHs», 2015, Ne 2(27)

Eventual consistency means that the profile compaction might take
some time, for that moment the read operations might return inconsi-
stent results (incomplete segment list). However once compaction is fi-
nished, then the model becomes consistent (lists of segments for all
connected profiles are the same).

In order to make this operation more efficient, the model (1) mi-
ght be slightly modified with supporting one more column family
UNSYNCED_SEGMENTS - list of recently added segments that
have not been synchronized yet. Once synchronized, the segments are
removed from this family.

Considering super-node problem, the fact is that indeed Associati-
ons family might consist of millions connected profiles in general case.
Retrieving all of them affects performance and does not make sense
for real-time operations. That’s why operation Check Connection is desi-
gned to not to use this family at all.

HBASE mapping. By design the data model (1) is tuple-based, thus
its implementation on top of HBASE schema assumes just seamless
mapping between tuple elements and corresponding columns and
column families. Also, it worth using some special HBASE features
like:

e efficient querying and filtering by column name (not a value);
e values might have multiple versions.

Addressing that, master profiles, instead of having NULL-valued
MASTERID column, should be just suppressed, that speeds up the
operation “Retrieve complete list of unique profiles”. Control over row
versions allows to track modifications on Segments column family, that
speeds up the operation “Profile Compaction”.

The intention is to to store all rows inside single HBASE table, disti-
nguishing rows by TY PE column. However this is not necessarily and
rows might be treated inside dif ferent tables depending on type.

The outcome table schema shall address the following items:

e each row is identified by ID;

e “System” column family consists of just two columns: TY PE and
MASTERID;

e “Segments” column family to track segments, each segment might
be just separated column;

e “Associations” column family to keep information about all
connected profiles;

e “Properties” column values for edges to keep information about
edge credibility.

The background operations (**) might be implemented on top of
HBASE CoProcessor API [13]. This makes operation execution more

ISSN 1560-8956 7

MiskBigOMY U HAYKOBO-TeXHIYHUH 30ipHUK «AJaNTHBHI CHCTEMH aBTOMATHYHOIO yIpaBJiHHs», 2015, Ne 2(27)

transparent and controllable. However it is still feasible to implement
the operations on top of dedicated Spark/Scalding applications.
Conclusions. Proposed data model and corresponding operations
provide consistent view and API on user profile storage with graph-like
connections between each other. Unlike graph databases this model
has limited support of graph-like operations and thus is focused pri-
marily on the operations being vital for DSP. The data model comes
with mapping to HBASE database. One of the strong schema’s si-
des is its simplicity. That gives an opportunity to adapt the schema
for existent HBASE profile databases and enhance them with the
model’s features.In addition, the model is designed to address strong
advantages of NoSQL databases, that gives an opportunity to adapt
schema for other NoSQL databases like Cassandra or Aerospike.

References

1. Forecast: RTB Ad Spending To Be One-Fifth of Total Di-
splay Advertising in 2013. [Electronic resource] / AdExchanger
| News and Views on Data-Driven Digital Advertising. —
Access mode: http:/adexchanger.com/data-nugget/forecast-rth-
ad-spending-to-be-one-fifth-of-total-display-advertising-in-2013/

2. Real Time Bidding Market (RTB) to Hit $42 Billion by 2018:
41% CAGR for 2014—-2019. [Electronic resource] / PR Newswire:
press release distribution, targeting, monitoring and marketing.
- Access mode: http://www.prnewswire.com/news-releases/real-
time-bidding-market-rtb-to-hit-42-billion-by-2018-41-cagr-for-
2014-2019-282863381.html

3. Trofimov B.E User Identification Problems on DSP Side in Terms
of Advertising RTB Auctions/ B.E Trofimov, E.A. Arsiriy, A.V. Arsi-
riy // Information Technologies in Innovation Business conference
(ITIB). — 7 - 9, October, Kharkiv, 2015. — pp. 97 — 100.

4. Neo4j database official web site [Electronic resource] // Neo4j®),
Cypher®, and Neo Technology® are registered trademarks of
Neo Technology, Inc. — Access mode: — http://neo4;j.com/

5. Titan database official web site [Electronic resource] /TITAN Di-
stributed Graph Database — Access mode: — http:/thinkaurelius.
github.io/titan/

6. S2Graph database official web site [Electronic resource] / GitHub,
Inc., 2015 — Access mode: — https:/github.com/kakao/s2graph

7. Blueprints official web site [Electronic resource] // GitHub, Inc.,
2015 — Access mode: — https://github.com/tinkerpop/blueprints/
wiki

8. Gremlin official web site [Electronic resource] // GitHub, Inc., 2015
— Access mode: — https://github.com/tinkerpop/gremlin/wiki

8 ISSN 1560-8956

MiskBigOMY U HAYKOBO-TeXHIYHUH 30ipHUK «AJaNTHBHI CHCTEMH aBTOMATHYHOIO yIpaBJiHHs», 2015, Ne 2(27)

9. Titan Data Model [Electronic resource] — Titan Documentati-
on Chapter 54. Titan Data Model — Access mode: — http:/s3.
thinkaurelius.com/docs/titan/0.5.0/data-model.html

10. Hbase shims inside Titan Source Code [Electronic resource] // Gi-
tHub, Inc., 2015 — Access mode: — https://github.com/thinkaurelius/
titan/tree/titan10/titan-hbase-parent

11. Scalding Framework Official web site Code [Electronic resource]
// GitHub, Inc., 2015 — Access mode: — https:/github.com/twitter/
scalding

12. Titan: The Rise of Big Graph Data [Electronic resource] / Rodri-
guez, M.A., Broecheler, M., // Public Lecture at Jive Software, Palo
Alto, 2012.— Access mode: — http:/thinkaurelius.com/2012/10/25/a-
solution-to-the-supernode-problem/

13. Hbase CoProcessor Introduction [Electronic resource] /Trend Mi-
cro Hadoop Group: Mingjie Lai, Eugene Koontz, Andrew Purtell
// The Apache Software Foundation Blogging in Action, .— Feb
01, 2012 .— Access mode: — https:/blogs.apache.org/hbase/entry/
coprocessor_introduction

Otpumano 10.10.2015 p.

ISSN 1560-8956 9

