
UDC 004.042

O. Linevych

HETEROGENEOUS ARCHITECTURE

FRAMEWORK FOR VIDEO ANALYSIS SYSTEM

Abstract: From the point of view of neurobiology the processes of human analysis of sound,

images, video are investigated. From the point of view of software engineering, architectural

solutions of systems that automate these processes are analysed. Based on the obtained data for the

new automation system it has been developed an architectural solution that improves the quality of

the video analysis process due to considering images and sounds; has a flexible and scalable

structure compared to others, so the system can adapt faster to changes in requirements.

Keywords: Video recognition, architectural styles, software quality metrics, neural

networks, LSTM.

Problem description

Currently, software systems that automate the analysis of processes / events work with

data formats such as audio, image and video format. Video contains more information about

processes / events, as it contains synthesized audio and visual information about them. Hence,

video analysis was chosen as an analysis problem that can be solved more effectively.

Humans perform analysis more efficiently than automated systems because they perceive

audio and visual information. This fact was confirmed after a study of seventy-six analysis

systems, which analysed in 98% only one aspect - sound or image. Two percent of systems

that analysed both aspects did so less effectively than humans. Such systems could identify

objects and short-term events by marker sounds, such as a dog's growl or a gunshot. However,

no system has been found that builds a meaningful logically related description of video

processes based on audio and visual information synthesis.

Formulation of the problem

To identify the steps of human analysis that will be automated by the system, to

analyse what abstractions can represent the process of video analysis in the human body; to

create based on abstractions potential mechanisms (software components), their properties

and behaviour; to develop an efficient, flexible, scalable architectural solution; to compare the

developed architectural solution and existing ones.

Problem decision

The process of human analysis according to [1] is represented by stages:interest in a

particular event/object (reaction to a stimulus accompanied by concentration);

1. classification (recognition) of the perceived event / object;

 O. Linevych

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

27

2. evaluation - to evaluate the information about the event / object in the "knowledge

base" of the brain;

3. inference if necessary, based on evaluation. Inference is experience. The

experience is stored in memory.

A stage is a process that, according to General system theory [2], is considered as a

system. Process objects can also be represented as systems with certain properties and behaviours.

Process processes and objects are described in classes or logically connected class associations -

components. The component can be described by type and its detailed implementation.

Described above human analysis stages were translated into an architecture solution of

a structure:

1. Stage of interest is described as a separate component in IMotiveService and

MotiveService classes.

2. Recognition stage. A person recognizes audio (component described in classes

IAudioRecognition, AudioRecognition) and visual (class IVisionRecognition) information.

However, visual information comes in several types - images or text. Therefore, visual

information can be specified in two classes: ImageRecognition and TextRecognition, based

on this component of visual information recognition is described by 3 classes -

IVisionRecognition, ImageRecognition, TextRecognition.

3. Stage of evaluation of the received information. Described as a separate component

in the IPriorityService, PriorityService classes.

4. Stage of inference. Described as a separate component in the classes

IRecognitionInference, RecognitionInference.

5. As an auxiliary component was selected a mechanism that manages memory. It is

described in IMemoryService, MemoryService classes. Memory is used to store inferences

(certain patterns of behaviour, for example) or edit them (adaptation - assimilation and

accommodation). Note that the human brain uses different types of memory in accordance

with the tasks.

The described components are visualized in a class diagram:

To compare the created architectural solution with another existed solutions were selected:

1. popular today API Keras (used by NASA, YouTube, Waymo), which is part of the

project of neuro-electronic intelligent robotic operating system [3]. Open for general use on

GitHub. Functionality: recognition of a set of images in video, text, audio by means of neural

networks of various types;

2. blackboard robotic system HEARSAY-II [4] language recognition on the basis of

which systems for monitoring sonar signals (HASP), airspace monitoring (TRICERO), etc.

were created. The system is not open source, but it is able to check some parts of code in its

documentation.

Items 8-12 are calculated for the recognition components.

Comparison is described in Table 1. Analysis system comparison.

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

28

F
ig

u
re

 1
.
V

id
eo

 a
n
al

y
si

s
sy

st
em

 c
la

ss
 d

ia
g
ra

m

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

29

Table 1

Analysis system comparison

№ Trait Analysis System Kesar HEARSAY-II

11 system tasks video image / sound

recognition, combination

of recognition and

presentation of

recognition in text form

as a report

video, audio image

recognition and text

recognition in the form

of a report

conversation in the

form of dialogue with a

person (the task of

language recognition)

в2 architectural style of

the system

object-oriented and

service-oriented based on

layers with components

developed in feedback,

feedforward styles,

combined mechanisms of

event-driven style

object-oriented and

service-oriented

interpreter, blackboard,

layered

33 decomposition

according to the

rules of

categorization of

abstractions

+ +-

the components are

highly connected and

therefore constructed in

violation of the rules

+

4 availability of

interfaces

(allows you to

replace the

implementation)

+

to analysis have 4

interfaces - there is a

possibility to replace

algorithm of training of

the analysis, the analysis

of video / images /

sounds / text

-

there are no interfaces

for video analysis

+

replaceable

components: 1 for each

knowledge source + it

is possible to replace

the implementation of

the language

recognition status board

5 ability to substitute

algorithm

+

 (due to interfaces it(i.e.

using of Dependency

inversions principle) it is

possible)

-

 (no interfaces for

algorithms, thus it is

hard to substitute)

+-

 (recognition

component is in a

separated component,

thus can be substituted)

6 the ability to change

the data type

+ - -

7 ability to edit

component functions

+ - +

8 instability of the

analysis component

[5]

Ca is afferent

couplings - incoming

component

dependencies;

Ce is

efferent couplings -

outcoming

c. video analysis: 3/(3+1)

= 0,75.

Other c. Analyses are

encapsulated

c. video analysis

(video_transformers.py):

10/(10 + 1) = 0,9.

Unstable. This problem

can be solved by

encapsulating (from

customer classes) data

closed information

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

30

https://en.wikipedia.org/wiki/Coupling_(computer_programming)
https://en.wikipedia.org/wiki/Coupling_(computer_programming)
https://en.wikipedia.org/wiki/Efferent_coupling

Сontinuation of the table

№ Trait Analysis System Kesar HEARSAY-II

9 depth of

inheritance(Depth of

inheritance [6]).

characterizes the

system as one that

can be expanded and

not duplicate code,

which saves space

and speeds up code

execution

neural networks

component is inherited

DIT = 1

(no deep inheritance,

neural networks

component can be

effectively expanded)

neural networks

component is inherited

(file base_layer.py base

class Layer)

DIT = 1

(no deep inheritance,

neural networks

component can be

effectively expanded)

closed information

10 cyclomatic

complexity

McCabe(М) [7]

A high score (more

than 10) means that it is

difficult to read the

code

for class

VideoRecognition.cs

М =< 3-5

for class

video_transformers.py,

training.py…

М > 4 more than in 24

functions.

Function build(self,

input_shape) М = 18

High cyclomatic

complexity in most

classes

closed information

11 Design smells[8]

flexibility +

flexible, because there are

interfaces, the mechanism

of inheritance is used,

polymorphism for work

with neural networks

-

no interfaces found, thus

inflexible

+

clear division at the

level of abstraction, the

absence of monolithic

classes

rigidity -

components are separated

by interfaces,

implementation does not

have direct dependencies

+

because of monolithic

classes with a large

number of responsibilities

-

immobility -

System is divided by

domain processes on

components, its parts are

separated by interfaces and

inheritance mechanisms,

thus they can be substituted

fast

+

because of monolithic

tightly bound classes

labour-intensive to make,

for reuse in another system,

k. analysis or related

+-

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

31

End of table

№ Trait Analysis System Kesar HEARSAY-II

 code opacity +
Classes, function,
variables are written
according to domain
terminology clean code
practices, thus code can
be read fast

-
Classes, function,
variables are written not
according to domain
terminology, to
understand code it takes
a lot of time due to
monolithic classes, high
value of cyclomatic
complexity, ambiguous
names of variables

+
Classes, function,
variable names are
written according to
domain terminology

12 Abstraction quality metrics [9]

coupling[10] for video analysis
component = 4
3 (aggregate recognition
component) + 1
(theoretical error handler)

for video analysis
(video_transformers.py)
= 10 (aggregate
components)

blackboard component
that contain with
recognized data status
depends on knowledge
sources, thus =
knowledge sources
amount(according to
diagram its more then 6)

cohesion
(LCOM4,
characterized by the
number of
responsibilities of the
class)

for video analysis
component = 1

image/audio/text analysis
components = 1

for video analysis = 5

Responsibilities > 1:

uploading, editing video,
working with video list,
working with model,
preparing video

speech analysis
component (according
to its blackboard
architecture) = 1

(because speech
component has 1
responsibility)

completeness +

(public functions are
interrelated according and
put classes
devised/invented by
categorization methods)

-

(public functions logically
connected spread out over
incorrect classes chosen not
by according categorization
methods)

+

(public functions are
interrelated according
and put classes
devised/invented by
categorization methods)

sufficiency + -
classes have more than 1
responsibility (violation
of the Single
Responsibility principle)

-

11
3

see the metrics of the
generalized
evolutionary process
for the parity of all
components of the
analysis, formula (1)
[10]

10 video analysis
component + к.
image/audio/text analysis
+ neural networks c. +
matrix c. + matrices
operations + activation
functions + memory c. +
motives c. 20

through an additional
mechanism of motives
and work with memory
costs of evolutionary
changes by 2 more

10 analysis c. + base layer
c. 1 + 7 neural networks
components = 18

-

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

32

 (1)

Description:

1. Modules represent any notion of module that is appropriate for the circumstances,

such as class, procedure, method, and package.

2. The notation t m (often) means: "t is defined to be m" or "t is equal by definition

to m" (often under certain conditions).

3. µ represents any software complexity metric that is meaningful with relation to a

particular module m. Software complexity metric that was used for the formula is a parity of

all components of the analysis.

Conclusions

The developed solution is more effective, as it analyses both aspects of video (sound

and image) and synthesizes the results of the analysis to build a logically related description.

Also, the solution is flexible, as each step of human analysis was extracted to a separate

component, which allows you to scale the system according to new requirements. Since the

system was divided on the components according to the principle of Dependency inversion

principle (with SOLID), the system can be edited in parallel by as many developers as

components, as each component does not depend on the other direction.

REFERENCES

1. Lefrançois G. R. Theories of human learning. Belmont, CA: Thomson/Wadsworth,

2006. 418 p.

2. Simon H. The architecture of complexity. Proceedings of the American

Philosophical Society. 1962. № 467.

3. АРІ системи розпізнавання: сайт. URL: Keras. URL: https://keras.io/about/

(accessed 2 October 2021).

4. Nii P. Blackboard systems at the architecture level. Expert Systems with

Applications. 1994. Vol. 7, № 1. P. 43-54.

5. Martin R. C., Martin M. Agile Principles, Patterns, and Practices in C# (Robert C.

Martin Series). Hoboken: Prentice Hall PTR, 2006.

6. Martin R. OO Design quality metrics. An analysis of dependencies. Cranbrook

Road: Green Oaks, 1994.

7. McCabe T. J. A Complexity Measure. IEEE Transactions on Software Engineering.

1976. Vol. SE-2, № 4. P. 308-320.

8. Eder J., Kappel G. Coupling and Cohesion in Object-oriented Systems. Institut fur

Informatik: Universitat Klagenfurt, 1986.

9. Booch G. Object-Oriented Analysis and Design with Applications. San Jose:

Addison-Wesley, 2007. 677 p.

10. Eden A. H. Measuring software flexibility using evolution complexity, 2006.

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

33

https://keras.io/about/

	+Belous, Krуlov, Anikin 2021
	+EN Стаття Тимошина та Южди
	+IoT_EN
	+Linevych
	+Serverless_EN
	+V. Nikitin, E. Krуlov, Y. Kornaga, V. Anikin edited
	+Yevhenii Vovk
	+Лихоузова
	+Лісовиченко
	+Писаренко Головатенко_
	+Писаренко Кульбака_en
	+Теленик
	+Тимошин
	+Тищенко - Стаття 2021
	Зміст
	УДК
	Про авторів
	Untitled
	Untitled

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 2
 Page size: same as current

 D:20211201145304

 Blanks
 Always
 2
 1

 D:20180918122136
 841.8898
 a4
 Blank
 595.2756

 70
 Tall
 1060
 190
 0
 1
 1

 CurrentAVDoc

 SameAsCur
 BeforeCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 0
 2

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 3 to page 139; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 70.87 points, vertical 34.02 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20211201151928

 1
 1

 BR

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1077
 169
 0
 1
 R0
 12.0000

 Odd
 3
 SubDoc
 139

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 34.0157

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 2
 139
 138
 5b9c048a-7f1f-4c3b-8081-9a223a0db7c7
 69

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 3 to page 139; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 70.87 points, vertical 34.02 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20211201151937

 1
 1

 BL

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1077
 169

 0
 1
 R0
 12.0000

 Even
 3
 SubDoc
 139

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 34.0157

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 3
 139
 137
 5c6d6052-58f8-41d7-bdf1-6f772e769ec4
 68

 1

 HistoryList_V1
 qi2base

