Аналіз та постановка задач дослідження проблеми ідентифікації швидких процесів

Автор(и)

  • Олександр Африканович Стенін д.т.н., проф. кафедри технічної кібернетики НТУУ "КПІ",

DOI:

https://doi.org/10.20535/1560-8956.10.2007.34179

Анотація

У даній статті розглядається задача ідентифікації швидких процесів. Пропонується вибір експоненціальних моделей у якості апроксімантів та екстраполяторів у задачах числового наближення експериментальних даних різного роду процесів і, в першу чергу, швидких.

При постановці задач дослідження проблеми ідентифікації швидких процесів, був проведений аналіз існуючих методів і алгоритмів оцінювання параметрів у використанні до експоненціальних моделей.

Посилання

Базара М., Шетти К. Нелинейное программирование. Теория и алгоритмы.- М.: Мир, 1982.-583 с.

Бард Й. Нелинейное оценивание параметров.- М.: Статистика, 1979.-350 с.

Бейко И.В., Бублик Б.Н., Зинько Н.П. Методы и алгоритмы решения задач оптимизации.- Киев: Вища школа, 1983.-512 с.

Браверман Э.М., Мучник И.Б. Структурные методы обработки эмпирических данных.- М.: Наука, 1983.-464 с.

Вапник В.Н., Червоненкис А.Я. Теория распознавания образов (статистические проблемы обучения).- М.: Наука, 1974.-416 с.

Вапник В.Н. Восстановление зависимостей по эмпирическим данным.- М.: Наука, 1979.-448 с.

Дабагян А.В. Оптимальное проектирование машин и сложных устройств.- М.: Машиностроение, 1979.-280 с.

Ивахненко А.Г. Долгосрочное прогнозирование и управление сложными системами.- Киев: Техника, 1975.- 312 с.

Ивахненко А.Г., Зайченко Ю.П., Димитров В.Д. Принятие решений на основе самоорганизации.- М.: Сов.радио, 1976.-280 с.

Ивахненко А.Г. Индуктивный метод самоорганизации моделей сложных систем.- Киев: Наукова думка, 1982.-296 с.

Ивахненко А.Г., Кротов Г.И., Юрачковский Ю.П. Экспоненциально-гармонический алгоритм МГУА.- Автомати¬ка, Киев, 1981,№2,с.23-30

Ланцош К. Практические методы прикладного анализа.-М.: Гос. изд.физ.-мат.лит., 1961.- 524 с.

Пшеничный Б.Н., Данилин Ю.М. Численные методы в экстремальных задачах.- М.: Наука, 1975.- 320 с.

Райбман Н.С. Что такое идентификация ?- М.: Наука, 1970.-118 с.

Ройтенберг Я.Н. Автоматическое управление.- М.: Наука, 1971.-396 с.

Романенко А.Ф., Сергеев Г.А. Вопросы прикладного анализа случайных процессов.- М.: Сов. радио, 1968.- 256 с.

Сеа Ж. Оптимизация. Теория и алгоритмы.- М.: Мир, 1973.-244 с.

Солодовников В.В., Бирюков В.Ф., Тумаркин В.И. Принцип сложности в теории управления.- М.: Наука, 1977.- 344 с.

Теория автоматического регулирования/ Под ред. В.В.Солодовникова.- М.: Машиностроение, 1967, в 3-х книгах.

Толстой Н.А., Феофилов П.П. Новый метод исследования релаксационных процессов и его применение к изучению некоторых физических явлений.- Успехи физ.наук, 1950, т. 42, с.44-107

Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач.- М.: Наука, 1979.- 284 с.

Химмельблау Д. Анализ процессов статистическими методами.- М.: Мир, 1973.- 957 с.

Химмельблау Д. Прикладное нелинейное программирование. - М.: Мир, 1975.-534 с.

Эйкхофф П. Основы идентификации систем управления.- М.:Мир, 1975.-684 с.

Bellman R. On the separation of exponentials.- Boll. Unione Matem. Ital., 1960,3, 15, № 1, p.38-39

107. Perl W. A Method for curvefitting by exponential functions. - Internat. J.appl. Radiation a. Isotopes, 1960, 8, p. 211-222

Rice J.R. Chebyshev approximation by exponentials.- SIAM J., 1962, 10, №1, p. 149-161

Rolfe Timothy J. Yeast squares fitting of polynomials and exponentials , with programming examples.- Math, and Comput. Educ, 1982, 16, № 2, p. 122-132

Scharf J.- H, Peil J. Algorithmus und ALGOL – program zur Anpas-sung von e-Functionspolinomen an Messwerte durch innere Regression.- Electronische Informationsverarbeitung und Kybernetik 1972, 8, № 4, s.225-244

##submission.downloads##

Опубліковано

2007-02-09